乔治 布尔发明了一套符号用来进行逻辑演算,创造了逻辑代数系统,完成了逻辑的数学化。布尔称他的工作为 思维的定律 ,理由是命题代数和思维过程的原则紧密相联。 新的知识常常会为你解决一些意想不到的难题。布尔代数就可以应用于解决逻辑问题,这些问题的条件形成一个命题的总体,我们可以利用它证实某些其他命题的真和假。布尔代数在代数学、逻辑演算、集合论、拓扑空间理论、测度论、概率论、泛函分析等数学分支中均有应用。 本书介绍了布尔代数、广义布尔代数、布尔方程、布尔矩阵、布尔表示等概念,还列举了布尔代数在逻辑线路、极大极小值等问题中的应用。
Many authoregin their preface by confidently describing how their book arose.We started this project so long ago, and our memories are so weak, that we could not do this truthfully.Otheregin by stating why they decided to write.Thanks to Freud, we know that unconscious reasons can be as important as conscious ones, and so this seems impossible, too.Moreover, the real question that should be addressed is why the reader should struggle with this text.
《工程数学基础教程》内容包括泛函分析、矩阵分析和数值科学计算三部分内容。主要介绍线性空间与线性算子、矩阵的相似标准形、赋范空间、有界线性算子与方阵范数、矩阵分析、内积空间与代数方程组的解法、插值法与数值逼近、数值积分与数值微分以及常微分方程的数值解法。同时,各章后面都配有大量的习题供学生选做或复习。
《(数学中的小问题大定理)丛书(第六辑):数论三角形》由麦比乌斯带联想,从正多棱柱体两端扭转相接的面数规律导出数字直角三角形,兼与贾宪三角形比较,阐述它的数字排式与性质,其中涉及初等数论中的许多内容。《(数学中的小问题大定理)丛书(第六辑):数论三角形》适合于大、中师生以及数学爱好者阅读参考。
丛书(第6辑):代数多项式》介绍了怎样应用对称条件解方程组及不等式,所有这些问题的解答都使用基于对称多项式定理的公式。 《 丛书(第6辑):代数多项式》适合于准备参加竞赛的中学生、师范学院的学生和数学教师及数学爱好者阅读。
《高等代数解题方法与技巧》共6章,主要包括矢量代数与解析几何,一元多项式与行列式,矩阵及其在线性方程组和二次型理论中的应用,线性空间与线性变换,双线性函数与二次型,域上多元多项式环等内容。《高等代数解题方法与技巧》通过解答典型例题,阐释基本理论、思维方式和解题技巧;特别强调代数和几何的结合,强调各个知识点之间的联系和整合。在强调思想方法的同时,也重视技巧的训练,将思维与方法渗入到例题与习题中,使读者在学习高等代数知识的同时,掌握高等代数的思维方法,提高运用综合知识解决问题的能力和技巧。 《高等代数解题方法与技巧》适合理工科本科生使用,也适合有较好基础的数学爱好者。
《三角级数论》以现代的观点简明而完整地讲述傅里叶级数的基础理论,全书共分7章。章讲述预备性知识;第2,3章讲傅里叶级数的性质;第4章讲傅里叶级数的收敛性及其判别法;第5章、第6章讲傅里叶级数的求和法及其应用;一章讲一般的三角级数。另有一个附录。对全书主要内容的来源作了一个综述。
《复半单李代数》源于作者1965年的讲义。该书前两部分是一个概述,幂零,可积的,半单李代数。复半单李代数包含在第三、四章。最后一章论及在没有证明的情况下,如何由李代数转向李群,这部分只是一个简单介绍。目次:幂零李代数和可积的李代数;半单李代数(一般定理);嘉当子代数;sl2及其形式;根系;半单李代数的结构;半单李代数的线性表示;复群和紧群;索引。读者对象:李群、拓扑和代数等相关专业的研究生。
《交换代数教程》是一部交换代数的教程,讲述清晰透彻,方法新颖,比较侧重交换代数的几何意义,但是比Eisenbud的大字典要好读一些,同时也有相当的深度。可以作为一到两学期的教程或者自学的不错选择。本书以整个几何背景一脉相承,围绕着本领域优选了一些很重要的概念和结果。能够使读者更深入地学习书中的知识。尽管强调理论,但还是有三章集中讨论计算方面。图例和练习使得书中的知识更加丰富。
《复半单李代数》源于作者1965年的讲义。该书前两部分是一个概述,幂零,可积的,半单李代数。复半单李代数包含在第三、四章。最后一章论及在没有证明的情况下,如何由李代数转向李群,这部分只是一个简单介绍。目次:幂零李代数和可积的李代数;半单李代数(一般定理);嘉当子代数;sl2及其形式;根系;半单李代数的结构;半单李代数的线性表示;复群和紧群;索引。读者对象:李群、拓扑和代数等相关专业的研究生。
本书是本科大学生数学竞赛辅导书,可供自学使用,也可用于竞赛培训。书中通过典型例题的精解来梳理重点方法,同时穿插介绍一些有普遍性的解题技巧,题解后的总结和讨论使方法更系统和实用。本书的例题精选自国内外各
为适应目前数学教育改革趋势,我们特组织一批骨 对师范生必修课程《初等代数研究》进行教材方面的改革。《初等代数研究》包括:数系、式、函数、方程、不等式、数列、组合数学初步、概率论、数理统计和数学建模十个部分。 本书依据 课程标准(高中和义务教育阶段)中对数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析六大数学核心素养的考查要求,设置相应板块,旨在整合学生的知识体系,加强大学数学与中学数学知识的联系,将二者充分融合。 本书可作为全日制高等师范院校培养本科生、研究生的教材或参考书,也可以作为数学教师、数学爱好者的参考书。