本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,不仅包括由于数学分析的需要而产生的线性代数的论题,还广泛选择了其他相关学科如微分方程、*化、逼近理论、工程学和运筹学等有关的论题。本书主要内容有:特征值、特征向量和相似性、酉相似、schur三角化及其推论、正规矩阵、标准形和包括jordan标准形在内的各种分解、lu分解、qr分解和酉矩阵、hermite矩阵和复对称矩阵、向量范数和矩阵范数、特征值的估计和扰动、正定矩阵、非负矩阵。 本书逻辑清晰,结构严谨,既注重教学又注重应用。在每一章的开始,作者都介绍几个应用来引入本章的论题以激发学习兴趣。在章节末尾,作者还独具匠心地编排了许多具有探索性和启发性的习题,引导读者提高描述和解决数学问题的能力。本书是一本畅销的教材,对从事线性代数纯理论研究和应用研究的人
《线性代数/新核心理工基础教材》共分为五章,包括行列式,矩阵,线性方程组,矩阵的特征值与特征向量和二次型.《线性代数/新核心理工基础教材》吸取教材精华部分,依照文科生和留学生的知识结构要求及特点,围绕教学大纲内容,强调教材的层次性针对性,即便于文科生高等数学教导,也方便自学,各知识点后配有相应习题,并附有习题答案。 《线性代数/新核心理工基础教材》可作为外语学院、媒设学院、行政管理、国际经济与贸易、公共事业管理、留学生等的教学用书,也可供广大读者进行自学。
《线性代数(新核心理工基础教材普通高等教育十二五重点规划教材)》的教学内容涵盖*对线性代数课程的教学大纲,在不影响掌握基本知识的前提下,忽略了部分偏理论的推导。 《线性代数/普通高等教育“十二五”重点规划教材·国家极精品课程使用教材·新核心理工基础教材》共5章,分别为行列式、矩阵、线性方程组与n维向量、矩阵的相似对角化及二次型、线性空间及其线性子空间。 《线性代数/普通高等教育“十二五”重点规划教材·国家极精品课程使用教材·新核心理工基础教材》的教学内容按模块设置.完成前三章关于求解线性方程组的内容的教学,大约需要2~3学分.完成本书所有内容的教学,大约需要3-4学分。 本书对基本理论的介绍简洁明快,对基本方法的介绍细致周到,所选例题不仅介绍了经典的解题方法,而且包含了许多常用的基本概
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范
本书以解析数论的四个问题:平面区域内的整点问题、素数分布问题、Goldbach问题和Waring问题为中心,很好地阐明了解析数论的三个重要方法:复积分法、圆法及三角和法.本书的特点是少而精,叙述和证明简洁.阅读本书仅需要初等数论、微积分及复变函数基础知识.书中每章后都配有习题,其中一些是近代解析数论的重要的成果,读者可通过这些习题了解近代解析数论的研究领域.本书可供大专院校数学系师生、研究生及有关的科学工作者阅读.
本书是一部经典的线性代数教科书.其内容根据作者在奠斯科大学和基辅大学的授课材料整理修订而成,曾被用作苏联高等院校的教材。全书内容包括:行列式、线性空间、线性方程组、以向量为自变量的线性函数、坐标变换、双线性型与二次型、欧几里得空间、正交化与体积的测度、不变子空间与特征向量、欧氏空间里的二次型、二次曲面和无穷维欧氏空间的几何学。本书的特点是:一、配有大量的例题和习题;二、把线,性代数和解析几何巧妙融合在一起.在文中自然运用几何的术语和概念对代数的对象进行解释和描述;三、从有限维空间(线性代数)巧妙地过渡到无穷维空间(泛函分析),为读者学习泛函分析打下基础。
《H-矩阵类的理论及应用》专门研究具有广泛应用背景的H-矩阵类。全书共5章,章介绍有关的预备知识;第2章至第4章详细阐述正定矩阵类、稳定矩阵类、对角占优矩阵类、M-矩阵类和H-矩阵类等的定义、结构、性质、判定方法,以及几类矩阵之间的密切联系。第5章介绍几类矩阵在数值计算、齐次Markov过程、投入产出分析等方面的应用。《H-矩阵类的理论及应用》取材丰富,反映了这些矩阵类研究的进展,可作为高等院校理工科研究生和数学专业高年级本科生的教学用书,也可作为相关专业科研和技术人员的参考用书。
《李群讲义》主要讲述李群的基本理论及其应用,目的就是试图将李群的精要及主要应用作一简明的介绍。全书共分六章。章介绍紧致群的线性表示论。第二章详细说明如何去实现李群结构的线性化和李代数在李群结构论上的基本重要性。第三章中研讨连通紧致李群的伴随变换群的轨几何,它是紧致李群的结构和分类理论的枢纽。第四章得出紧致李群的结构和分类理论(它是李群论的精要,也是在几何、分析领域中具有广泛应用的基础理论。)进而得出复半单李群或实半单李群的理论的推广。第五章用代数的观点,讨论复半单李代数的结构与分类。第六章则涉及实半单李代数的理论,特别是它与对称空间理论的联系。这将有利于读者进一步理解李群论,并使读者在李群理论的应用上得到某种启发。本书适用于数学研究生、高年级本科生阅读,也可供相关的教师和研
《线性代数及应用(经管类高等学校应用型创新型人才培养系列教材)》全书共分4章, 、2章以矩阵和向量为主线展开讨论,第3章讨论了线性方程组及 小二乘解,第4章以矩阵的特征值、特征向量,矩阵的相似对角化和化二次型为标准形为主线展开讨论。 全书在体系安排上突出矩阵方法,从始至终贯穿初等变换的作用;内容安排上从问题人手,配以几何图形解释,形象直观;理论部分从具体到抽象、由易到难,分散了难点;重要计算都给出了通过MATLAB实现的例子,每章 一节都给出了应用案例。 苏燕玲、许静、张鹏鸽编著的《线性代数及应用(经管类高等学校应用型创新型人才培养系列教材)》可供高等学校经济管理类专业学生选用,也可供理工科学生及有关经济管理人员参考.