本书是Springer《数学研究生教材》第73卷,初版于1974年,30年来一直是美国及世界各国大学数学系采用的研究生代数教本。此书Springer已重印12次,由此证明这是一部经典的研究生教材。全书取材适中,论述清晰,自成系统.本书在一些问题的处理上有其独到之处,如Sylow定理的证明、伽罗瓦理论的处理、可分域的扩张、环的结构理论等。书中有大量的练习和精心挑选的例子。 目次:群和群的结构;环;模;域和伽罗瓦理论;域的结构;线性代数;交换环和模;环的结构;范畴论。 读者对象:数学专业研究生和科研人员.
本书从有限维空间线性算子的特征值出发, 采用类比、归纳等方式, 通过大量实例循序渐进地引入无穷维空间上线性算子的谱理论, 系统介绍并分析了有界线性算子、共轭算子、正常算子、自共轭算子、紧算子的结构, 讨论了上述这些有界线性算子的谱点分类、谱集的性质和谱分解定理. 进而对闭的线性算子、无界线性算子, 特别是在近代物理学、量子力学中有着深刻应用背景的微分算子的结构、亏指数、自共轭扩张和它们的谱分解加以分析.
本书针对应用科学中的11个重要的非线性发展方程,介绍差分求解方法的**研究成果,包括微分方程问题解的守恒性和有界性分析、差分方法的建立、差分解的守恒性和有界性分析、差分解的存在性分析、差分解收敛性的证明、差分格式的求解等内容。建立的差分求解格式包括非线性差分格式和线性化差分格式。这11个非线性发展方程如下:Burgers方程、正则长波方程、Korteweg-deVries方程、Camassa-Holm方程、Schr.dinger方程、Kuramoto-Tsuzuki方程、Zakharov方程、Ginzburg-Landau方程、Cahn-Hilliard方程、外延增长模型方程和相场晶体模型方程。
本书介绍线性偏微分算子的现代理论,主要论述拟微分算子和Fourier积分算子理论,同时也系统地讲述了其的基础——广义函数理论和Sobolev空间理论。本书分上、下两侧。上册着重讨论拟微分算子及其在偏微分方程经典问题(Cauchy问題和Dirichiet问题)上的应用。下册将主要介绍Fourier积分算子理论和佐藤的超函数理论。
花拉子米的《算法》与《代数学》是他的代表性著作,也是数学史上具有重要价值的著作。前书系统介绍了十进制记数法,不仅在阿拉伯世界流行,并被译成拉丁文在欧洲传播。后书主要讨论一元一次和一元二次方程,以及相应的四则运算。两书至今仍有很高的价值,被译成多国文字在全世界传播。本次出版的即为二合一的中文译本。
本书为《系统与控制理论中的线性代数》的第二版,保留了原书的基本理论,删除了不必要的内容,增加了近三十年来出现的新的重要理论。书中一些内容是作者长期研究的结果。本书分上下两册,共十三章。上册为基础理论,前四章概述与深化了线性代数的基本理论,后四章为几个重要的特殊理论。下册为应用部分,分别是数值代数的基础,关于稳定性和系统描述与设计涉及的内容,以及一些特殊的矩阵类、S过程和线性矩阵不等式。各章均附有习题。
本书为《系统与控制理论中的线性代数》的第二版,保留了原书的基本理论,删除了不必要的内容,增加了近三十年来出现的新的重要理论。书中一些内容是作者长期研究的结果。本书分上下两册,共十三章。上册为基础理论,前四章概述与深化了线性代数的基本理论,后四章为几个重要的特殊理论。下册为应用部分,分别是数值代数的基础,关于稳定性和系统描述与设计涉及的内容,以及一些特殊的矩阵类、S过程和线性矩阵不等式。各章均附有习题。
本书是作者在为研究生开设代数拓扑学课程的讲义基础上整理而成的,全书共九章,第零章为预备知识,前三章介绍单纯同调论,第四章为当前流行的范畴论,从第五章开始介绍在一般空间上的连续同调论。后四章是CW空间、一般系数的同调论、乘积空间的同调论和Steenrod运算。本书论述严谨,深入浅出,作者力图从较直观的几何概念出发引出极为抽象的概念。
数是如何出现的?早期那些五花八门、千奇百怪的计数文字,如何变成了通用的阿拉伯数字?是谁发明或发现了代数?运算的规则是怎样建立的? 几何是怎样出现的?几何与代数有着什么样的紧密关系? 本书带您回到远古、中古、近代,为您讲述几何与代数画卷中的一个个小故事,认识故事中的主角:他们出现在从远古到十八世纪的历史长卷里,有着各异的背景、身份和个性;他们生活在世界上不同种族集居的地区,生存的环境大多很恶劣 或战火弥漫,或饥病蔓延,或陷于阴谋处于动乱,数千年的历史进程,和平只是难得的瞬间 他们历尽磨难,但执着地思考、探索、追寻。他们中间,虽然有罕见的天才,但很多并非专业的数学家,更多的,甚至连名字也没有留下来。正是他们一砖一石、一代又一代的努力,为现代数学这座精美富丽的殿堂搭建起坚实的地基!
无
本书的意图就是利用Fourier限制型估计、可微函数空间的Littlewood-Paley刻画、Fourier局部化技术、Bourgain的能量归纳技术与Tao的频率局部化方法,给出了非线性波动方程(临界及次临界Klein-Gordon方程、具双Schrodinger结构的高阶Klein-Gordon方程)的经典研究与现代研究的统一处理.