《数学概览:代数基本概念》是沙法列维奇的经典名著之一,目的是对代数学、它的基本概念和主要分支提供一个一般性的全面概述,论述代数学及其在现代数学和其他科学中的地位。 《数学概览:代数基本概念》高度原刨且内容充实,涵盖了代数中所有重要的基本概念,不只是域、群、环、模,而且包括群表示、Lie群与Lie代数、上同调、范畴论等。它不是按照代数教科书的传统模式写的,而是反映了作者的强烈观点:“用基本例子的一批样本,它会表达得更好。这给数学家提供了动机和实质性的定义,同时给出这个概念的真实意义。” 书中共有精心挑选的164个例子和45幅图,给读者提供了物理背景和直觉,通过它们读者能够对抽象的概念产生更深的印象。相对而言,书中只有6个引理和104个定理,而且这些定理往往不加证明,只给出证明思路,这将
本书英语原版*初由美国数学会(American Mathematical Society)出版,原书名是Combinatorial Problems and Exercises: Second Edition, 原书作者是 L szl Lov sz,原书版权声明是 ?1979 held by the American Mathematical Society.本翻译版由高等教育出版社有限公司经美国数学会授权和许可出版。
单变量多项式零点问题本质上是代数的,而在多变量时则变为一种几何。《平面代数曲线》中,作者费舍尔从传统的平面代数曲线出发来进入整个学科,其核心内容是普吕克、克莱布施和诺特的经典公式,它们描述了曲线的各种整体和局部不变量之间的关系。在书中,读者将很快看到代数与几何、分析与拓扑的融合,这正是一种典型的复代数几何。作者特别注重具体的计算方法,全书包含了大量具体的例子和图示。 本书是一本非常**的代数几何入门书,预备知识只包括分析、代数和初等拓扑的基础知识。学习本书可以帮助建立几何直觉,这种直觉往往是产生*多的先进思想和技巧的原因,这在高维变量的学习中会用到。
本书是一部优秀的李群及其表示论研究生教材,深受数学专业和物理专业的研究生好评。本书初版于1972年,以后经过多次修订重印,本书是1997年的第7次修订重印版。书中对一些问题的处理很有特色,立足点较高,但叙述十分清晰,如线性变换的Jordan-Chevalley分解、Cartan子代数的共轭定理、同构定理的证明、根系统的公理化处理、Weyl特征子公式、Chevalley群的基本结构等。
方捷编著的《格论导引/现代数学基础》讲述格论的基本概念与基础知识。其内容涵盖:有序集、保序映射、格与半格、完全格、理想与同态、格同余等基本概念;模格与半模格;分配格;有补格与布尔代数;伪补代数;Heyting代数(或称剩余格);de Morgan代数;Priesdey拓扑对偶理论。在目前格论研究领域中,Priemey 拓扑对偶空间理论是一个强有力的工具。为此,作者专门在第八章中给予详细的介绍,并附加一节介绍拓扑学的相关概念和基本性质,力求读者可以不借助拓扑学的教材也能理解、掌握相关的内容。 《格论导引/现代数学基础》内容适合不同层次的读者,可作为数学与计算机类专业本科生或研究生格论课程的教材或教学参考书。
本书是南开大学代数类课程整体规划系列教材的第一本,是在编者多年从事代数类课程及后续代数课程的教学过程中逐渐完成的。在国内外已有的同类教材的基础上,编者根据自己对代数学的理解,按照代数学发展的主要脉络来安排本书的内容。全书分为8章,包括多项式、行列式、矩阵、线性空间、线性变换、线性函数与双线性函数、Euclid空间和二次曲面等。本书的编写原则是关注数学概念的起源,遵循数学理论的发展历程,强调理论的整体性和内在联系。书中配有大量编者精心挑选的习题和训练与提高题,既有助于强化读者对课程内容的理解,也为后续的代数学课程埋下了大量伏笔。
保持问题是算子代数和算子理论交叉领域中的重要课题之一.本书共6章,第1章介绍书中涉及的算子代数和算子理论预备知识;第2章给出几类保持相似性的线性映射的刻画;第3章研究Banach 空间有界线性算子构成的代数上保持相似性的非线性映射;第4章刻画套代数上的Jordan 同态;第5章研究保持几类正交性的线性映射;第6章给出保持算子某些乘积数值域的非线性映射的刻画.本书可作为相关研究人员的参考书,也可作为数学专业研究生和高年级本科生教材或教学参考书.
本教材分上、下两册,上册由前六章构成,依次为集合论的基本概念、抽象代数的基本概念、Green关系与正则半群、群(特别地,有限群)、环与理想,模与线性空间;下册由后两章构成,依次为域与域的扩张,Galois理论导引。本书为上册。本教材的内容涵盖数学类专业本科生(特别地,各类数学人才班)的两门代数课程,上册的前五章或前六章(特别是未加*的部分)可用作数学类各专业必修基础课程抽象代数的教材或参考资料;下册的后两章可用于后续选修课程域论与Galois理论的教材或参考资料。
莫宗坚、蓝以中、赵春来编著的《代数学(下修 订版)/现代数学基础》为《代数学》下册,主要讲述 交换代数的基本知识,内容包括环论、赋值论、 Dedekind整环及同调代数。这些都是交换代数的精华 内容,是学习代数几何、代数数论等现代数学的 基础。 本书内容丰富,直观性强,推理自然,解释详尽 。本书的独到之处是特别注重对于交换代数的背景以 及与其他学科的联系的介绍。书中精选了大量的例题 与习题。 本书可作为高等学校数学专业研究生教材,也可 供数学工作者参考。
《李群讲义》主要讲述李群的基本理论及其应用,目的就是试图将李群的精要及主要应用作一简明的介绍。全书共分六章。章介绍紧致群的线性表示论。第二章详细说明如何去实现李群结构的线性化和李代数在李群结构论上的基本重要性。第三章中研讨连通紧致李群的伴随变换群的轨几何,它是紧致李群的结构和分类理论的枢纽。第四章得出紧致李群的结构和分类理论(它是李群论的精要,也是在几何、分析领域中具有广泛应用的基础理论。)进而得出复半单李群或实半单李群的理论的推广。第五章用代数的观点,讨论复半单李代数的结构与分类。第六章则涉及实半单李代数的理论,特别是它与对称空间理论的联系。这将有利于读者进一步理解李群论,并使读者在李群理论的应用上得到某种启发。本书适用于数学专业研究生、高年级本科生阅读,也可供相关专
本书分上、下两册出版。 莫宗坚、蓝以中、赵春来编著的《代数学(上第2 版)/现代数学基础》主要讲述近代代数的初步知识, 内容包括集合论与数论、群论、 多项式论、线性代数以及域论。 本书内容丰富,直观性强,推理自然,解释详尽 。此书的独到之处是 特别注重对于代数学的背景、基本思想以及与其他学 科的联系等方面的 介绍。书中精选了大量的例题和习题。本书的起点低 ,由浅入深。具有 高等代数基础知识的读者皆可以阅读本书,进而学到 现代代数学的较大部 分基础知识。 本书可作为高等学校数学系 高年级学生以及研究 生的教材,也可供 数学工作者参考。
本书是根据作者退休后在一些学校、场合有关数学的一些讲话整理出来的,一个讲话列为一讲.前面12讲主要是与本科生和研究生的座谈:内容涉及介绍伟大的国际数学大师陈省身先生在中国改革开放之后,回到祖国促进中国数学走向大国、强国之路;如何提高学习数学的动力,学习数学的方法;如何提高数学能力;几何学的重要性;代数学的一些特性;通过函数的泰勒展开得到欧拉公式及其推广体会微分学的精要;由河图、洛书到幻方、正交拉丁方介绍一点组合数学;用连续5次报告向同学介绍李群的产生、成长和发展.这12讲的内容都在宜宾学院讲过.第13讲则是作者在宜宾学院发展高峰论坛上的发言,说明这些讲话的初衷.第5讲与第14讲、第15讲是在科学出版社主办的有关课程研讨会上的发言;第16讲、第17讲是在黑龙江省高校教学发展示范中心 大学数学基础课程 骨干教师教学技能培
本书为第二版,内容包括三部分:*部分为矩阵代数,以矩阵为基线,介绍本书所需要的近代数学知识,包括非经典的矩阵乘法、随机矩阵、超矩阵、群论、张量、图与超图等。第二部分为控制理论,首先介绍经典控制理论的线性系统能控性、能观测性、标准分解、解耦、镇定与*控制等,然后介绍逻辑系统的控制理论,包括逻辑系统的状态空间方法、拓扑结构、能控性、能观测性、干扰解耦,以及K值与混合值逻辑系统。第三部分是博弈论,首先介绍博弈的基本概念,然后讨论演化博弈与网络演化博弈,包括其建模、分析与控制,特别介绍势博弈的算法与应用,*后讨论合作博弈,详细讨论了分配的生成及其合理性。 本书可作为各种不同专业的高年级工科学生,以及一、二年级研究生教材,也可作为对控制与博弈有兴趣的一般理工科学生和青年教师的参考读物。
内容简介本书为《高等代数》(丘维声著,科学出版社2013年3月出版)配套的习题解答与提示,汇集了该书的全部习题,计算题给出了答案,证明题给出了关键性的提示,并且对于相当一部分习题给出了详解,这些解法都很有特色,是高等代数课程的组成部分.
解析几何和线性代数是高等学校非数学类专业学生所必须掌握的重要数学基础知识。本书对线性代数的知识体系进行了重构,强化了代数与几何相结合的数学思想,注重数学思想和方法在教学中的应用,注重引导学生从学习知识向学习创造知识转变,力求体现“知识学习为载体,能力培养是关键,素质养成为目标”的课程教学理念。 本书包括解析几何、线性代数两部分内容。解析几何是多元微积分的基础,也为线性代数提供了几何直观背景。对于不需要讲授解析几何部分的专业,可以直接讲授线性代数部分。但我们建议读者在学习线性代数内容之前了解、掌握解析几何中向量代数、平面与直线、二次曲面等内容,帮助理解抽象的向量和向量空间等概念、坐标变换的几何直观模型以及二次型理论的几何应用。 本书可作为高等学校非数学类专业的线性代数或解析
这本书源自巴黎综合理工大学的一年级课程,全书主要内容包括: 数学小词典 以更紧凑的形式给出了如下数学基本概念的要点:群、环、域、矩阵、拓扑、紧性、连通性、完备性、数值级数、函数序列的收敛性、埃尔米特空间等,同时包含一百多个习题及解答。 讲述数学根基中的3个理论:有限群表示论、经典泛函分析和全纯函数理论。 13个问题校正综合了书中的定理,证明出一些漂亮结果(如证明 (3)是无理数)。 本书的主要特色在于强调数学的文化特性和数学的统一性。许多脚注都暂时离开数学的 高速公路 而进行了一次短途旅行。7个附录在课程内容范畴内讲述了经典数学文献的一些专题,展示如何结合这些基本理论来解决有深刻内涵的问题。其中之一是关于素数定理,它的证明经历了150多年才完成;另一个则是介绍了Langlands纲领, 数论学家已经围
本书应用变分法对无界区域上一些非线性椭圆型方程及方程组解的存在性和集中性进行研究。这些方程及方程组源自理论物理、天体物理、等离子物理、流体力学、非线性弹性学等领域。研究内容主要包括带电磁场位势的非线性Schr.dinger方程组解的存在性和集中性,带位势的拟线性Schr.dinger方程*小能量解的存在性以及一类拟线性椭圆型方程组解的存在性。《BR》本书可作为偏微分方程、泛函分析专业及相关理科方向研究生的教材和参考书,也可供有关专业的教师和科技人员参考。