《抽象代数习题精选精解》章是抽象代数的基本概念。第二章是群论,内容包括循环群、置换群、不变子群、商群、群同态、群在集合上的作用、Sylow定理、群的直积等。第三章是环和域,内容包括整环、除环、理想、商环、环同态、素理想与极大理想等。第四章是整环的因子分解。第五章是域,包括素域、单扩域、代数扩域、有限域等。 我们在《抽象代数习题精选精解》各节的部分给出了相关内容的定义和重要结论,这些是相关内容的重点和难点;第二部分给出了大量的习题,并将习题按照知识点分类,难易搭配,以便帮助读者更好地掌握相关知识以及更好地掌握解题技巧。我们对《抽象代数习题精选精解》的习题解答努力做到详尽,希望能够为读者学习这门课程提供帮助。
用常规和母函数方法解决排列、组合、分配问题的技巧;用递推关系、容斥原理、棋盘多项式等求解计数问题的方法与技巧;图形可变换情况下染色方案的统计方法;存在性问题的证明方法与技巧。其中含实用例题300多个。
《复半单李代数》源于作者1965年的讲义。该书前两部分是一个概述,幂零,可积的,半单李代数。复半单李代数包含在第三、四章。*后一章论及在没有证明的情况下,如何由李代数转向李群,这部分只是一个简单介绍。目次:幂零李代数和可积的李代数;半单李代数(一般定理);嘉当子代数;sl2及其形式;根系;半单李代数的结构;半单李代数的线性表示;复群和紧群;索引。读者对象:李群、拓扑和代数等相关专业的研究生。
《线性代数/新核心理工基础教材》共分为五章,包括行列式,矩阵,线性方程组,矩阵的特征值与特征向量和二次型.《线性代数/新核心理工基础教材》吸取教材精华部分,依照文科生和留学生的知识结构要求及特点,围绕教学大纲内容,强调教材的层次性针对性,即便于文科生高等数学教导,也方便自学,各知识点后配有相应习题,并附有习题答案。 《线性代数/新核心理工基础教材》可作为外语学院、媒设学院、行政管理、国际经济与贸易、公共事业管理、留学生等的教学用书,也可供广大读者进行自学。
《近世代数/21世纪数学精编教材·数学基础课系列》从代数学的发展简史出发,深入浅出地阐述近世代数的基本理论、基本问题和基本方法。全书共分为五章,内容包括:代数学发展简史、同态与同构、群、环和域等。 《近世代数/21世纪数学精编教材·数学基础课系列》每节主题鲜明,内容翔实丰富,既有理论阐述,又有实际应用举例,本书的另一特色在于以读者熟悉的高等代数知识作为背景知识,类比地引入近世代数中相应的概念,使读者能够更好地理解和掌握相关的内容,另外,不惜笔墨介绍代数学的发展简史,说明近世代数的产生、发展过程,这样既能激发学生学习的积极性和主动性,又方便教师根据历史线索,结合教学实际,有侧重地安排教学内容。 《近世代数/21世纪数学精编教材·数学基础课系列》每节配有适量的习题,书末附有习题答案
《线性代数(新核心理工基础教材普通高等教育十二五重点规划教材)》的教学内容涵盖*对线性代数课程的教学大纲,在不影响掌握基本知识的前提下,忽略了部分偏理论的推导。 《线性代数/普通高等教育“十二五”重点规划教材·国家极精品课程使用教材·新核心理工基础教材》共5章,分别为行列式、矩阵、线性方程组与n维向量、矩阵的相似对角化及二次型、线性空间及其线性子空间。 《线性代数/普通高等教育“十二五”重点规划教材·国家极精品课程使用教材·新核心理工基础教材》的教学内容按模块设置.完成前三章关于求解线性方程组的内容的教学,大约需要2~3学分.完成本书所有内容的教学,大约需要3-4学分。 本书对基本理论的介绍简洁明快,对基本方法的介绍细致周到,所选例题不仅介绍了经典的解题方法,而且包含了许多常用的基本概
本书是根据高等教育本科线性代数课程的教学基本要求编写而成的.主要内容有:n阶行列式、矩阵与向量、矩阵的运算、线性方程组、相似矩阵与二次型、线性空间与线性变换、矩阵理论与方法的应用. 书后附有部分习题参考答案. 书末的附录中选编了2010~2015年全国硕士研究生入学考试线性代数的部分试题.
《线性代数和概率统计基础/普通高等教育 十二五 规划教材》分为线性代数、概率与统计两个部分,共6章,内容包括行列式、矩阵、向量组与线性方程组的解、概率与分布、*变量的数字特征、数理统计初步,基本涵盖了工科各专业所需要的相关数学知识. 《线性代数和概率统计基础/普通高等教育 十二五 规划教材》在编写上突出了数学知识的系统性、简洁性、实用性,在表达上力求简明扼要,同时注重概念产生的背景,强调应用数学的意识,旨在培养学生的抽象思维能力、逻辑推理能力、运算能力以及科学建构数学知识体系的能力,并且使学生通过体会问题解决的数学过程,进一步形成解决问题的分析和思考能力,为其他课程的学习打下坚实的数学基础,
本书分为四个部分,共计十四章,如“从自然数系到有理数系”、“无理数与实数系”、“代数、基本定理的定性说明”、“业余数学家阿尔岗的证明”、“美国数学家安凯屈的证明”、“圆周率及其元理性”、“自然对数的底数e及其元理性”、“有关多项式的一些理论”、“代数扩域、有限扩域与代数元域”等。
本书按照普通高等学校教学指导委员会制订的本科数学基础课程教学基本要求,并结合作者多年从事教学实践的经验编写而成。全书共分六章,内容包括行列式、矩阵及初等变换法、求解线性方程组理论与方法、向量的相关性理论、矩阵的特征值问题及二次型化标准形方法等。书中每章后一节介绍了利用MATLAB软件解决相应线性代数问题的内容,为逐步培养学生运用软件解决数学问题的能力打下良好的基础。课后习题按照一定的难易比例进行配备,习题中融入了近年考研真题,以期满足各层次学生的学习需求。书末附录中介绍了线性代数发展简史,能拓宽视野,扩展知识面,提高数学素养。 本书适用于工科院校本科各专业,亦可供其他相关专业选用,适用面较广。本书还可以作为考研读者及科技工作者的参考书。
本书通过实例介绍了常用的初级数学建模方法,包括预测预报方法(回归分析、信息时间传递、马尔可夫链、灰色系统、神经网络预测)、关联分析方法(简单相关系数、偏相关系数、通径分析、典型相关分析、主成分分析、斯皮尔曼等级相关系数、独立性检验)、综合评价与决策方法(模糊综合评价、主成分综合评价、因子分析、层次分析法、灰色关联、方差分析)、分类与判别方法(模糊聚类分析、系统聚类、动态聚类、模糊模式识别、贝叶斯判别)以及数学规划方法等。全书注重数学建模思想介绍,重视数学软件MATLAB、LING在实际中的应用。全书案例丰富,通俗易懂,便于自学。
这本《线性代数核心思想及应用》由王卿文编著,运用矩阵论研究的新成果对线性代数中的行列式、矩阵论、线性方程组、多项式、二次型、线性空间和线性变换的理论及应用进行综合研究,以展示线性代数的核心思想及处理线性代数问题的简捷、有效、实用的核心技术。本书还特别研究了一般教科书中难以展开讨论的若干重要内容,精心设计和选编了难度相当或略高于硕士研究生入学考试的典型、实用而新颖的 282道例题和141个习题,以此向读者展示线性代数核心思想和技术的具体应用。书末附有详细的习题答案。 《线性代数核心思想及应用》可供理工科专业的大学生、研究生、高校数学教师以及使用线性代数和矩阵论知识的科技工作者阅读使用。特别适合参加硕士研究生入学考试的考生以及参加大学生数学竞赛的学生参考。
《离散数学及其应用(原书第7版)》是经典的离散数学教材,为全球多所大学广为采用。《离散数学及其应用(原书第7版)》全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思想以及应用与建模。全书取材广泛,除包括定义、定理的严格陈述外,还配备大量的实例和图表说明、各种练习和题目以及丰富的历史资料和网站资料。第7版在前六版的基础上做了大量的改进,使其成为更有效的教学工具。
这本《线性代数核心思想及应用》由王卿文编著,运用矩阵论研究的新成果对线性代数中的行列式、矩阵论、线性方程组、多项式、二次型、线性空间和线性变换的理论及应用进行综合研究,以展示线性代数的核心思想及处理线性代数问题的简捷、有效、实用的核心技术。本书还特别研究了一般教科书中难以展开讨论的若干重要内容,精心设计和选编了难度相当或略高于硕士研究生入学考试的典型、实用而新颖的 282道例题和141个习题,以此向读者展示线性代数核心思想和技术的具体应用。书末附有详细的习题答案。 《线性代数核心思想及应用》可供理工科专业的大学生、研究生、高校数学教师以及使用线性代数和矩阵论知识的科技工作者阅读使用。特别适合参加硕士研究生入学考试的考生以及参加大学生数学竞赛的学生参考。
《(数学中的小问题大定理)丛书(第六辑):数论三角形》由麦比乌斯带联想,从正多棱柱体两端扭转相接的面数规律导出数字直角三角形,兼与贾宪三角形比较,阐述它的数字排式与性质,其中涉及初等数论中的许多内容。《(数学中的小问题大定理)丛书(第六辑):数论三角形》适合于大、中师生以及数学爱好者阅读参考。