本书从实用和简明的角度介绍了数值分析的基本概念和方法,并对误差估计、方法的收敛性和稳定性以及优缺点等作了适当分析.全书共分8章,内容包括:绪论,插值法,曲线拟合与函数逼近,线性方程组的数值解法,数值积分与数值微分,非线性方程与方程组的数值解法,常微分方程初值问题的数值解法,矩阵特征值问题的数值方法.附录中给出了MATLAB简介.书中配有典型例题、习题和实验题,书后给出了部分习题答案.本书可作为理工科各专业研究生和高年级本科生的教材或教学参考书,也可供从事科学与工程计算的科技工作者参考.
吉米多维奇的《数学分析习题集》概括了《数学分析》的命题,但该书习题数量大,同时难题较多,对于大多数学习者来说难度较大。为帮助广大学习者更好地掌握《数学分析》的基本概念,提高综合运用各种解题技巧和方法分析问题和解决问题的能力,本书从吉米多维奇的《数学分析习题集》中选择了一部分习题进行汇编。这些习题内容较为全面、题型广泛、基础性题目较多、代表性最强,以在帮助广大学习者从多个角度理解相应的基本概念和基本理论的基础上,掌握基本解题方法,并事石展思路,举~反三,触类旁通,以较好地掌握《数学分析》的基本内容和解题思路,为参加各类考试和进一步深造奠定坚实基础。
短短八讲,不仅让你了解数学分析的概貌,更让你领会数学分析的精髓。这本由苏联数学家和数学教育家辛钦潜心编著的经典教材,思路清晰,引人入胜,全面梳理了数学分析的主要内容,涉及连续统、极限、函数、级数、导数、积分、函数的级数展开以及微分方程等主题。 本书原是作者在国立莫斯科大学为工程师授课的教案。书中选材独到,叙述深入浅出,即使是只学过最简单的数学分析课程的人也能容易地阅读和理解。而以此为基础,你可以更好地学习数学分析相关主题更为深入的内容。无论你是工程师、经济学者、数学教师,还是学习数学分析课程的大学生(包括非数学专业的大学生),阅读本书都能获益匪浅。 本书根据苏联国立技术理论书籍出版社1948年第三版译出,本次修订改正了一些错误,新增加了一些注解。
“数值分析”也叫“计算方法”,主要研究使用计算机解决数学问题的数值计算方法和理论。本书主要内容包括非线性方程(组)求根、解线性方程组的直接法和迭代法、曲线拟合和函数插值、数值微积分、常微分方程的数值解法、矩阵的特征值问题等。考虑到工科院校该课程教学的目的是满足工程和科研应用需要,因此本书更注重介绍工程应用的方法,弱化数学理论的推导证明,并且各章大多配有应用案例、上机实验和习题。本书提供配套电子课件,登录华信教育资源网注册后可以免费下载。 本书适合作为普通工科院校少学时本科生和研究生教材或教辅使用。
《西北工业大学规划教材·数学分析(册):一元微积分》总结了作者数十年来关于古典微积分的研究成果和教学经验,对现阶段微积分的教学内容和体系进行了卓有成效的探索和改革,基于传统的教学内容引申出“阶估计方法”,通过简捷途径介绍了Euler求和公式。
本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
吉米多维奇的《数学分析习题集》概括了《数学分析》的命题,但该书习题数量大,同时难题较多,对于大多数学习者来说难度较大。为帮助广大学习者更好地掌握《数学分析》的基本概念,提高综合运用各种解题技巧和方法分析问题和解决问题的能力,本书从吉米多维奇的《数学分析习题集》中选择了一部分习题进行汇编。这些习题内容较为全面、题型广泛、基础性题目较多、代表性最强,以在帮助广大学习者从多个角度理解相应的基本概念和基本理论的基础上,掌握基本解题方法,并事石展思路,举~反三,触类旁通,以较好地掌握《数学分析》的基本内容和解题思路,为参加各类考试和进一步深造奠定坚实基础。
“数值分析”也叫“计算方法”,主要研究使用计算机解决数学问题的数值计算方法和理论。本书主要内容包括非线性方程(组)求根、解线性方程组的直接法和迭代法、曲线拟合和函数插值、数值微积分、常微分方程的数值解法、矩阵的特征值问题等。考虑到工科院校该课程教学的目的是满足工程和科研应用需要,因此本书更注重介绍工程应用的方法,弱化数学理论的推导证明,并且各章大多配有应用案例、上机实验和习题。本书提供配套电子课件,登录华信教育资源网注册后可以免费下载。 本书适合作为普通工科院校少学时本科生和研究生教材或教辅使用。
本书是作者在长期从事数学分析教学的基础上写成的,也是数学分析基本概念、基本定理及各类M题常用与典型方法的一个总结。书中对数学分析的内容按知识点进行整合,对各个重要知识点进行了系统讲解和辨析,对近些年来一些重点高校的典型考研试题进行了独到的分析和讨论,使得整个数学分析所涉及的知识结构更加清晰。 全书共17讲,每一讲都系统总结了相关知识点,并给出了一系列典型M题和解题方法。读者可从这些方法中加深对数学分析概念的理解,达到开阔思路、提高解题能力的目的。
《数据分析与建模方法》面向复杂统计问题求解和统计工程需求,介绍现代统计的基本原理和方法,内容涵盖经典统计、贝叶斯统计、统计学习等统计理论以及计算密集型方法和探索性分析方法,涉及数据特征分析、模型参数推断、回归分析建模和系统状态估计等问题。每章后编配有习题。《数据分析与建模方法》适合作为高等学校自动控制、管理科学与工程等专业的研究生或高年级本科生教材,也可供从事数据分析与建模、装备试验与评价、信号处理等技术专题研究的科技工作者学习与参考。
吉米多维奇的《数学分析习题集》概括了《数学分析》的命题,但该书习题数量大,同时难题较多,对于大多数学习者来说难度较大。为帮助广大学习者更好地掌握《数学分析》的基本概念,提高综合运用各种解题技巧和方法分析问题和解决问题的能力,本书从吉米多维奇的《数学分析习题集》中选择了一部分习题进行汇编。这些习题内容较为全面、题型广泛、基础性题目较多、代表性最强,以在帮助广大学习者从多个角度理解相应的基本概念和基本理论的基础上,掌握基本解题方法,并事石展思路,举~反三,触类旁通,以较好地掌握《数学分析》的基本内容和解题思路,为参加各类考试和进一步深造奠定坚实基础。
本书是“工科数学分析”或“高等数学”课程教材,分为上?下两册?上册以单变量函数为主要研究对象,内容包括函数?极限与连续,导数与微分,微分中值定理与导数的应用,定积分与不定积分,常微分方程?下册侧重刻画多变量函数,从向量代数与空间解析几何开始,学习多元函数微分学?重积分?曲线积分与曲面积分,后介绍无穷级数? 本书结构严谨,逻辑清晰,阐述细致,浅显易懂,可作为高等院校非数学类理工科专业的本科教材,也可作为高等数学教育的参考教材和自学用书?
本书从实用和简明的角度介绍了数值分析的基本概念和方法,并对误差估计、方法的收敛性和稳定性以及优缺点等作了适当分析.全书共分8章,内容包括:绪论,插值法,曲线拟合与函数逼近,线性方程组的数值解法,数值积分与数值微分,非线性方程与方程组的数值解法,常微分方程初值问题的数值解法,矩阵特征值问题的数值方法.附录中给出了MATLAB简介.书中配有典型例题、习题和实验题,书后给出了部分习题答案.本书可作为理工科各专业研究生和高年级本科生的教材或教学参考书,也可供从事科学与工程计算的科技工作者参考.