本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
本书主要内容可分为三部分:第一部分为空间理论的建立,包含第一章“度量空间”和第二章“线性赋范空间与内积空间”;第二部分为两个空间之间线性映射的研究,包含第三章“线性算子”和第四章“线性算子的谱分析”;
本书对吉米多维奇的《数学分析习题集》中的习题进行了解答,全书分6册出版,本册为不定积分和定积分。这些习题涉及广、题型多。
《6.n.吉米多维奇数学分析习题集题解(2)(第4版)》4462题中的近三成的习题,根据题型的不同,在原题解的前面,分别或给出提示,或给出解题思路,或给出证明思路。冀图启发读者怎样分析该题,怎样下手求解;启发读者怎样总结解题的规律;启发读者怎样正确使用有关的数学公式、概念和理论,开拓视野,活跃思路;帮助读者逐步解决学习中的困难,为他们在学习过程中提供一个良师益友。这是本次修订的主要工作。
当调查设计具有复杂性质时,数据的统计分析就不再是简单的运行回归分析了。现在的调查全都伴随着抽样权重以支持正确的统计推断,大部分关于统计分析的教材,通过假定简单随机抽样而没有处理抽样权重的问题,而这一被
《Ь.П.吉米多维奇数学分析习题集题解》自1979年出版发行以来,历经30多个春秋,一直畅销不衰,深得读者厚爱。读者通过学习该书,对掌握数学分析的基本知识、基础理论和基本技能的训练,感到获益匪浅,赞誉其为学习数学分析“不可替代”之图书。 全书4462题中的近三成的习题,根据题型的不同,在原题解的前面,分别或给出提示,或给出解题思路,或给出证明思路。冀图启发读者怎样分析该题,怎样下手求解;启发读者怎样总结解题的规律;启发读者怎样正确使用有关的数学公式、概念和理论,开拓视野,活跃思路;帮助读者逐步解决学习中的困难,为他们在学习过程中提供一个良师益友。本册为《Ь.П.吉米多维奇数学分析习题集题解(6第4版)》,由费定晖、周学圣编演。
《西北工业大学规划教材·数学分析(册):一元微积分》总结了作者数十年来关于古典微积分的研究成果和教学经验,对现阶段微积分的教学内容和体系进行了卓有成效的探索和改革,基于传统的教学内容引申出“阶估计方法”,通过简捷途径介绍了Euler求和公式。
《泛函分析》是为数学类各专业本科生泛函分析课程编写的教材,在介绍泛函分析基本知识的同时,重视与经典分析、线性代数等课程之间的联系,让学生感受数学知识的产生和应用过程,注意数学思想方法的渗透、数学思维方
由费定晖、周学圣编演,郭大钧、邵品琮主审的图书《B.Ⅱ.吉米多维奇数学分析习题集题解》(以下简称为《题解》),全书共六册,自1979年经由山东科学技术出版社出版发行以来,历经34个春秋,先后共有4个版本30余次印刷,一直不衰,深得读者厚爱。对此我们倍感欣慰,这将鞭策我们为读者作出更多奉献。 这次受山东科学技术出版社的再次约请,由我负责,在《题解》一书的基础上,从各章节中挑选出较为经典的习题,除了原解答外,有些题还给出了分析提示或思路,从而组成一本新书《B.Ⅱ.吉米多维奇数学分析习题经典解析》(以下简称为《经典解析》),全书共一册出版。 对于《经典解析》一书,我有以下几点考虑: ,考虑到不同层次的读者的不同要求,各类型的习题由浅入深,由易到难。有些题在它的后面还加上注,例如,143题证明施托尔茨定理
费铭岗、邓志亮编的《实变函数与泛函分析(下普通高等教育十三五规划教材)》分上、下两册。本册系统地讲述了线性泛函分析的基本思想和理论,分五章:距离线性空间与赋范线性空间;Banach空间上的有界线性算子
本书主要介绍数值计算方法及其有关的理论,内容包括:非线性方程与方程组的数值解法、解线性方程组的直接法、解线性方程组的迭代法、插值法、函数逼近与曲线拟合、数值积分与数值微分、常微分方程的初值问题、矩阵的特征值和特征向量等内容.章末配有应用例题和数值试验习题.