本书全面、系统地介绍了矩阵论的基本理论、运算方法及其应用。全书分八章,前四章突出基础理论,重点介绍线性空间与线性变换,欧氏空间与酉空间,Jordan标准形,向量与矩阵的范数理论。后四章侧重应用,学习矩阵的分析运算,特征值的估计,广义逆矩阵在解线性方程组中的应用,矩阵直积在解矩阵方程及矩阵微分方程中的应用。每章配有相应的习题,书末给出答案与提示。附录中给出哈工大研究生矩阵分析2007 2012年考试试题及参考答案。本书力求行文流畅,例题详实,推论严谨,深入浅出,旨在提高工科研究生的数学修养和自学能力。
心算,看似神奇,实则有规律可循。 中国人的数学能力,在世界上首屈一指,绝非偶然。有很多充分掌握心算奥秘的密码。 指算六十甲子是心算万年历的一种方法,更是一个密码;多位数多样式乘法,也有快速完成的窍门。 阅读此书,加以练习,你也能成为 心算达人 !
数值分析的若干问题与方法介绍数值分析的若干问题与新方法,是作者对近年来数值计算方法研究工作的系统整理和总结。其主要内容包括:高精度数值积分公式的构造及加速;数值积分公式的对偶公式;Cotes校正公式及其误差估计;数值积分的Monte Carlo方法;改进数值积分公式的两种新策略;高精度数值积分公式的重构及渐近性;数值积分公式误差的X优估计;一类含中介值定积分等式证明题的构造;数值微分公式的构造及其应用;Newton迭代公式的改进等。本书可供计算数学工作者、从事科学与工程计算的科研人员,以及相关专业的研究生和本科高年级学生参考。