本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
本书旨在以动力系统理论为基础,阐述时间序列分析的现代方法。这部修订版,增加了一些新的章节,对原版进行了大量的修订和扩充。从潜在的理论出发,到实际应用话题,并用众多领域收集来的大量经验数据解释这些实用话题。本书对研究时间变量信号的各个领域包括地球、生命科学科学家和工程人员都十分有用。目次:基本话题:导论;线性工具和一般考虑;相空间方法;确定论和可预测性;不稳定性:Lyapunov指数;自相似性:当决定论是弱的时候非线性方法的应用;非线性线性精选;高等话题:高等浸入式方法;混沌数据和噪音;更多有关不变量;模型和预测;非平稳信号;耦合和非线性系统综合;混沌控制。A:TISEAN程序应用;B:实验数据集合描述。读者对象:数学、生命科学、经济等众多实践应用领域的科研人员。
本书提出了无限维动力系统、偏微分方程、数学物理交叉学科尖端领域的处理某些议题的新方法。书中的部分着重介绍了作者在达布变换和同宿轨道以及建立可积偏微分方程梅尔尼科夫积分方面取得的成果。第二部分则专注第二作者将达布变换应用于物理领域的工作。本书的特点在于作者及合作者发展的用达布变换建立可积系统中同宿轨道、梅尔尼科夫积分及梅尔尼科夫向量的崭新方法。可积系统(也叫孤立子方程)是有限维可积哈密顿系统在无限维的对应物,而上述所说的崭新方法所展示的是无限维相空间结构。本书可供数学、物理及其他相关学科领域的高年级本科生,研究生及该领域的专家参考。
本书共分五章。章论述非线性算子的一般性质,包括连续性、有界性、全连续性、可微性等,并给出了隐函数定理和反函数定理。第二章建立拓扑度理论。不仅建立了重要的有限维空间连续映像的Brouwer度和Banach空间全连续场的Leray-Schauder度,而且论述了较常用的凝聚场的拓扑度和A—proper映像的广义拓扑度。第三章将半序和拓扑度(不动点指数)相结合来研究非线性算子方程的正解,讨论了常用的凹算子和凸算子的正解及多解问题。第四章主要证明强制半连续单调映像的满射性和强制多值极大单调映像的满射性。第五章论述非线性问题中的变分方法,既包括古典的极值理论,也包括属于大范围变分学的Minimax原理和山路引理等。书中包括了对于非线性积分方程、常微分方程以及二阶半线性椭圆型偏微分方程的应用。本书可作为综合性大学和师范学院数学系研究生的教材以
《6.n.吉米多维奇数学分析习题集题解(2)(第4版)》4462题中的近三成的习题,根据题型的不同,在原题解的前面,分别或给出提示,或给出解题思路,或给出证明思路。冀图启发读者怎样分析该题,怎样下手求解;启发读者怎样总结解题的规律;启发读者怎样正确使用有关的数学公式、概念和理论,开拓视野,活跃思路;帮助读者逐步解决学习中的困难,为他们在学习过程中提供一个良师益友。这是本次修订的主要工作。
短短八讲,不仅让你了解数学分析的概貌,更让你领会数学分析的精髓。这本由苏联数学家和数学教育家辛钦潜心编著的经典教材,思路清晰,引人入胜,全面梳理了数学分析的主要内容,涉及连续统、极限、函数、级数、导数、积分、函数的级数展开以及微分方程等主题。本书原是作者在国立莫斯科大学为工程师授课的教案。书中选材独到,叙述深入浅出,即使是只学过简单的数学分析课程的人也能容易地阅读和理解。而以此为基础,你可以更好地学习数学分析相关主题更为深入的内容。无论你是工程师、经济学者、数学教师,还是学习数学分析课程的大学生(包括非数学专业的大学生),阅读本书都能获益匪浅。本书根据苏联国立技术理论书籍出版社1948年第三版译出,本次修订改正了一些错误,新增加了一些注解。
短短八讲,不仅让你了解数学分析的概貌,更让你领会数学分析的精髓。这本由苏联数学家和数学教育家辛钦潜心编著的经典教材,思路清晰,引人入胜,全面梳理了数学分析的主要内容,涉及连续统、极限、函数、级数、导数、积分、函数的级数展开以及微分方程等主题。本书原是作者在国立莫斯科大学为工程师授课的教案。书中选材独到,叙述深入浅出,即使是只学过简单的数学分析课程的人也能容易地阅读和理解。而以此为基础,你可以更好地学习数学分析相关主题更为深入的内容。无论你是工程师、经济学者、数学教师,还是学习数学分析课程的大学生(包括非数学专业的大学生),阅读本书都能获益匪浅。本书根据苏联国立技术理论书籍出版社1948年第三版译出,本次修订改正了一些错误,新增加了一些注解。