本书在一般测度论观点下的概率论和随机过程初步知识的基础上,介绍了随机分析学的基础及较新成果,全书分五章:章是预备知识,包括随机过程一般理论和鞅论初步;第二章是近代随机积分理论;第三章讨论连续半鞅的随机微分、伊藤公式及其应用;第四章介绍随机微分方程的现代理论;第五章是Malliavin随机分析。
本书是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。 全书从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。
陈国旺编著的《索伯列夫空间导论》主要讲述索伯列夫空间一般理论和在非线性偏微分方程中的应用。内容涉及Lebesgue空间Lp(Ω)及其基本性质;整数阶索伯列夫空间Wm,p(Ω)及其性质;Wm,p(Ω)空间的嵌入定理、紧嵌入定理和插值定理以及连续函数空间的嵌入定理。论述研究非线性发展方程时,常用到的含有时间的空间和含有时间的索伯列夫空间。介绍类似于索伯列夫空间嵌人定理的离散函数的插值公式,并利用离散函数的插值公式证明广义Schrodinger型方程组初边值问题整体广义解的存在性。讲述速降函数、缓增广义函数以及它们的Fourier变换和Lebesgue空间的Fourier变换,分数阶索伯列夫空间Hs(RN)和Hs(Ω)及其性质。介绍近年来外关注的几个非线性发展方程的初边值问题和Cauchy问题解的存在性以及解的爆破现象和解的渐近性质,使读者较快地利用索伯列夫空间这个有力理论工
《数学分析方法选讲》共分6章。章主要阐述分析证明中的一些最常见的基本处理方法与技巧。根据教学上的考虑和作者自己的体会,把这些常用的处理方法适当命名后止式地予以提出,作者认为这样做有利于学生加深对方法本身的理解。第2章是Abel方法及应用简介。在第3章不等式与估值问题部分中,作者利用幂平均函数对各种平均值不等式统一进行了处理。考虑到交换运算次序在级数求和及积分计算中的重要性,作者在第4章对它进行了一些讨论,并给出了判断级数和积分不一致收敛的比较简单并且使用方便的方法。第5章简略地介绍了阶的估计及其在极限计算和级数与积分收敛性中的应用。第6章用较多的例题介绍极限存在性问题的证法和各种极限的求值方法。各章的内容都有较大的独立性,因此读者在阅读时可根据自己的需要加以选择。
本书是为学习数学分析课程的学生、从事数学分析教学与研究的读者而编写的。全书共分为七章,系统地把数学分析中的重要定理总结和归纳为微积分基本定理、微分中值定理、积分中值定理、积分关系定理、极限关系定理、闭区间上连续函数的性质定理、实数连续性(完备性)定理七类进行研究。全书从定理的历史演变分析、定理的内容与证明分析、定理的几何意义与条件结论分析、定理间的相互关系分析、定理的应用分析、定理的推广分析等角度展开研究。
本书着重以实变方法介绍近代调和分析的基本理论。除一章的预备知识外,一些活跃的研究议题,如Calderon-Zygmund奇异积分算子、BMO与Hardy空间、算子的加权模估计等,在本书中都以精简篇幅来介绍这些内容极其来龙去脉。本书可供数学专业本科高年级与研究生选作,亦可作为从事偏微分方程或物理数学方面的研究者快速了解经典调和分析的入门书籍。
《拉克斯定理和阿廷定理--从一道IMO试题的解 法谈起》(作者戴执中、佩捷)是“数学中的小问题大 定理”之一,通过一道IMO试 题研究讨论拉克斯定理和阿廷定理,并着重介绍了希 尔伯特第 十七问题。 《拉克斯定理和阿廷定理--从一道IMO试题的解 法谈起》可供从事这一数学分支或相关学科的数学工 作者、大 学生以及数学爱好者研读。
李殿璞编著的这本《非线性控制系统理论基础( 第2版)》讲授非线性系统理论。非线性系统理论与线性系统理论相平行、相对应,但更具一般性。非线性系统理论所使用的主要数学工具微分几何方法已被证明是分析和设计非线性系统的卓有成效的和强有力的工具。本书便于教学使用,内容由浅入深,概念清晰,理论严谨,有重新构建的更为合理的体系结构,侧重于系统地介绍基础理论,同时也兼顾实际应用。为使读者时刻掌握学习的主动性和更便于自学使用,本书除在每章节前对内容作概括介绍外,还对每个定理、命题、例题都给出方法提示或目标指示。
《MZW242 数学分析辅导及习题精解(下册)(华东师大第五版)》1.解读考研大纲,图解本章知识要点,归纳常考点,解答学习中的疑难问题;2.考研组长根据教学经验及对考研试题的研究,将重难点归纳为经典题
《MZW242 数学分析辅导及习题精解(下册)(华东师大第五版)》1.解读考研大纲,图解本章知识要点,归纳常考点,解答学习中的疑难问题;2.考研组长根据教学经验及对考研试题的研究,将重难点归纳为经典题