本书是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程数学分析 项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。本次修订适当补充了数字资源。 本书分上、下两册出版。 上册内容包括:集合与映射、数列极限、函数极限与连续函数、微分、微分中值定理及其应用、不定积分、定积分、反常积分八章。 下册内容包括:数项级数、函数项级数、Euclid空间上的拓扑、多元函数的微分学、重积分、曲线积分与曲面积分、含参变量积分、Fourier级数八章。 本书可以作为高等学校数学类专业数学分析课程的教科书,也可
本书是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程数学分析 项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。本次修订适当补充了数字资源。 本书分上、下两册出版。 上册内容包括:集合与映射、数列极限、函数极限与连续函数、微分、微分中值定理及其应用、不定积分、定积分、反常积分八章。 下册内容包括:数项级数、函数项级数、Euclid空间上的拓扑、多元函数的微分学、重积分、曲线积分与曲面积分、含参变量积分、Fourier级数八章。 本书可以作为高等学校数学类专业数学分析课程的教科书,也
本书是 十二五 普通高等教育本科*规划教材,普通高等教育十一五*规划教材和面向21世纪课程教材。内容包括数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分、向量函数的微分学等。本次修订是在第四版的基础上对一些内容进行适当调整,使教材逻辑性更合理,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。本书可作为高等学校数学和其它相关专业的教材使用。
本书是 十二五 普通高等教育本科*规划教材。内容包括实数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、 实数的完备性、不定积分、定积分、定积分的应用、反常积分,附录为微积分学简史、实数理论和不定积分表。 本次修订是在第四版的基础上对一些内容进行适当调整,使该书逻辑性更合理些,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。 本书可作为高等学校数学和其它相关专业的教材使用。
本书是《普林斯顿 读本》系列图书的第二本,该套书的论述风格友好、平易近人,通过作者与读者之间的互动对话和相关示例非常清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两步式求解方法:首先展示如何回溯到求解问题的关键,之后说明如何严谨规范地写下解题过程。书中还给出了丰富的示例,帮助学生巩固所学知识。
本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
本书根据J. R. 曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解与接受,本书采用将流形嵌入高维欧氏空间中的观点讲述,故而又在第九章给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形。
本书是一本调和分析的入门书。全书分为三部分,首先,给出了直线R上的Fourier分析理论,包括Fourier级数和Fourier变换;接着,将1R上的Fourier分析思想推广到局部紧Abel群(LCA群)上;最后,介绍了非交换群上调和分析技巧,特另抛,以Heisenberg群为例描述了非紧非交换群上的Fourier分析理论。每章后都配备了一定数量的习题,可作为本书内容的补充或延伸。
苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,涵盖了中学所讲授的微积分初步的全部内容,包括导数的概念,多项式、三角函数、指数函数、对数函数等基本函数的导数,不定积分和定积分的概念,图形的面积及有限和的极限等基础知识。本书通俗易懂,在正文后另有庞特里亚金的短篇自传作为附录,供广大读者参考。
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。本书详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解本书的内容。
本书介绍了数学分析的基本概念、基本理论和方法,包括一元(多元)函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等。全书分三册,本册内容包括多元函数及其微分学、多元函数微分法的应用、含参变量积分、重积分、曲线积分和曲面积分及各种积分之间的关系。书中列举了大量例题来说明数学分析的定义、定理及方法,并提供了丰富的思考题和习题,便于教师教学与学生自学。每章末都有小结,对该章的主要内容作了归纳和总结,并配有复习题,方便学生系统复习。书中还配有一些概念、定理和方法的视频讲解,内容呈现方式更加生动直观。
本书内容主要涉及Fourier分析的经典理论,如算子插值定理及应用、BMO空间、Fourier变换,以及非线性泛函分析初步.第1章主要介绍Lp情形下的Riesz插值定理,Marcinkiewicz插值定理以及这些算子插值定理在Hardy-Littlewood极大算子理论、极大平均振动算子理论中的应用,并由此给出了BMO空间的概念和BMO空间一些基本性质与刻画.第2章系统地讲述了Fourier变换的L1理论、Fourier变换的反演以及Fourier变换的L2理论.第3章引入了两类基本测试函数空间,并由此定义了两类广义函数及其导数与Fourier变换.第4章简单介绍了非线性算子的一些基本概念与性质,如非线性算子连续性与有界性、全连续算子、非线性算子的微分和隐函数定理.
本书是供综合性大学和师范院校数学类各专业本科一、二年级学生学习数学分析课程的一部教材,分上、中、下三册。本册为下册,讲授多元函数的数学分析理论,内容包括多元函数的极限和连续性、多元函数微分学及其应用、含参变量的积分、多元函数积分学及其应用、场论初步、微分形式和斯托克斯公式等。
《时滞反应扩散方程与上下解方法》详细阐述与时滞反应扩散方程相关的*研究成果. 针对时滞反应扩散系统, 利用上下解方法、单调迭代方法、不动点理论及泛函微分方程振动性理论, 证明时滞反应扩散方程周期解及概周期解的存在性、性及稳定性理论, 书中还介绍时滞反应扩散方程平衡解的存在稳定性理论、波前解的存在性理论、平衡解的振动性理论、解的动力学行为及奇异摄动理论.
本书系统地汇集了数学分析各个部分的一些典型例题,并对这些例题的解(证)题方法、思路进行了深入的分析和总结,使读者能从例题分析中提高自己对课程内容的理解、分析和解决问题的能力.每章都附有一定数量的习题,供读者学习时进行练习.
《数学分析(第二册)》讲述的是高等数学的基础内容——数学分析,其核心内容是微积分学,《数学分析(第二册)》共兰册。《数学分析(第二册)》为第二册,共分六章,包括定(Riemann)积分、反常积分、常数项级数、函数项级数、幕级数与Taylor级数、Fourier分析初步。 《数学分析(第二册)》是由作者在北京大学数学科学学院多年教学所使用的讲义基础上修改而成,内容丰富、深入浅出。对较难理解的定理、定义以及可深入探讨的问题,《数学分析(第二册)》以加注的形式予以解说,以利于读者更好地接受新知识。在章未附有后记,意在为读者更清楚地了解知识背景,更迅速地提高数学能力创造条件。《数学分析(第二册)》选用适量有代表性、启发性的例题,还选人足够数量的习题和思考题。习题和思考题中,既有一般难度的题目,也有较难的
《生物数学丛书10·时滞微分方程:泛函微分方程引论》的原著是由日本从事泛函微分方程理论与数值解研究的四位教授合作并由日语撰写而成的本有关泛函微分方程理论学习的入门书,全书由6章和附录A-B构成.第1章、第2章、第3章以及第6章包含了1维、2维自治线性系统特征值的完整的理论分析,也介绍了经典的Liapunov函数法在时滞微分方程稳定性理论研究中的重要应用.第4章、第5章以及附录介绍了泛函微分方程解的存在性、性等基础理论,同时也介绍了一般的抽象线性自治系统解半群的分解等.为了便于读者的理解,《生物数学丛书10·时滞微分方程:泛函微分方程引论》还插入了大量的计算机数值模拟图。
本书作为数学分析课程的教材,共分上、中、下三册出版.中册主要介绍一元函数积分学、多元函数微分学及重积分等基本内容.本书注重概念引入的自然性与理论推证的严密性.既注意内容的连贯和完整,也顾及教学安排上的机动和便利.表述上力求准确、简明,深入浅出.习题配备难易适当且题型多样.
本书结合Matlab的使用全面介绍了常用的数值计算方法与技术。内容包括线性代数方程组的数值解法、方程(组)求根的迭代法、插值法、曲线拟合和函数逼近初步、数值微积分、矩阵特征值与特征向量的计算等,每部分均有代表性的例题和习题。本书*明显的特点是对数值分析理论部分着重阐明构造算法的基本思想与原理,既注重理论的严谨性,又注重方法的实用性。
本书讲述数学分析的基本概念、原理与方法,分为上、下两册。上册内容包括函数、数列极限、函数极限、函数的连续性、导数与微分、微分中值定理及其应用、不定积分、定积分、定积分的应用、广义积分等。下册内容包括数项级数、函数项级数、幂级数与Fourier级数、多元函数的极限与连续性、多元函数微分学、隐函数定理及其应用、含参量积分、重积分、曲线积分、曲面积分等。本书除每节配有适量习题外,每章还配有总习题,分为A与B两组。书末对每道习题都给出参考答案与提示,其中难度大的证明题有较详细的提示,以方便读者在自主学习时查看。
由旷雨阳和刘维江共同编*的《数学分析精要解读》一书是为适应高等学校数学学科教学改革的需要,结合作者多年来教学实践的经验和体会编写而成的,其中不乏创新性的见解,同时也参考了大量的文献,尽力形成自己的独特的风格。 全书分为13章,内容涉及*限、函数的连续性、微分中值定理、积分学、凸函数及其应用、不等式与函数的零点问题、级数、多元函数微分学、隐函数微分法及函数相关性、含参变量积分与广义积分、重积分、曲线积分、曲面积分。内容的编排顺序基本上和通用的数学分析教材相吻合。在素材选取的深度、难度和宽泛度上,比一般的数学分析的基础教材有明显的提升。对较基础性的知识点只是简要地加以介绍,而将重点放在解题思想的挖掘与提炼上。选题具有很强的典型性、灵活性、启发性、趣味性和综合性,对培养学生的能力*为有益