本书根据J. R. 曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解与接受,本书采用将流形嵌入高维欧氏空间中的观点讲述,故而又在第九章给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形。
本书是Folland教授的名著《实分析》的第二版。与*版相比,在一些内容的编排上作了适当调整,同时引入了一些新的内容,去掉了已经过时的内容,更有利于学生学习与思考。作为一部优秀的教材,内容不仅涵盖了分析学的基本内容和技巧,还介绍了一些从事其他领域的研究工作所必需的基础知识。此外,教材中的大量习题,能够进一步拓展思维,从而易于更加深入地了解这些内容背后的真实想法。本书适用于理工类专业及相关专业的研究生。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981年第1版出版以来,到2015年已经修订、增补至第7版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,第二卷内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。与常见的数学分析教材相比,本卷内容相当新颖,系统地引进了现代数学(包括泛函分析、拓扑学和现代微
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。本书详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解本书的内容。
本书以复杂波动系统解的判定为背景,围绕初始值,研究如何找出弱解的**存在条件,优化适定性的区域和门槛结果,从而形成一个行之有效的判定方案。本书首先综述波动系统的分类、结构、研究背景和经典波动系统问题,进而详细地叙述与本书相关的初边值问题,以及本书用到的弱解理论和数值算法。在此基础上,本书研究了位势井框架下初始条件对波动系统整体适定性的影响,同时基于有限差分法和迭代原理对其中两类波动系统进行了数值算法的探讨。本书的研究内容对于解决物理和工程领域的实际问题,例如,光栅传感器的检测性能和桥梁的坚固度等具有重要的现实意义,同时在理论层面为复杂非线性系统的可解条件和适定性分析提供了可行方案,具有一定的科学价值。
本书是一部数学经典教材,初版于1965年,以作者在东京大学任教十余年所用的讲义为基础写成的。经过几次修订和增补,1980年出了第5版,本版(第6版)实际上是第5版的重印版。全书论述了泛函空间的线性算子理论及其在现代分析和经典分析各领域中的许多应用。目次:预备知识;半范数;Baire-Hausdorff定理的应用;正交射影和riesz表示定理;Hahn-Banach定理;强收敛和弱收敛;傅里叶变换和微分方程;对偶算子;预解和谱;半群的解析理论;紧致算子;赋范环和谱表示;线性空间中的其他表示定理;遍历性理论和扩散理论;发展方程的积分。 读者对象:数学专业的研究生和科研人员。
本书从该理论的最初起源 积分函数的最小化开始,对该理论做了较深的讨论。变分观点的发展很大程度上和优化、平衡、控制这些理论是紧密相关的。书中在一个统一的框架之中,全面讲述了经典分析和凸分析之外的变分几何和次微积分知识。也讲述了集收敛、集值映射和epi收敛、对偶和正则被积函数。目次:最大和最小;凸性;柱体;集合凸性;集值映射;变分几何;上境图极限;次梯度和次导数;Lipschitzian性质;次微积分;对偶化;单调映射;二阶理论;可测性。读者对象:数学专业的研究生、老师和相关的科研人员。In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis refiects this breadth. For a lon
本书是分析领域内的一部经典著作。主要内容包括:抽象积分、正博雷尔测度、LP-空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、*大模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、HP-空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式一致逼近等。另外,书中还附有大量设计巧妙的习题。本书体例优美,实用性很强,列举的实例简明精彩,基本上对所有给出的命题都进行了论证,适合作为高等院校数学专业高年级本科生和研究生的教材。
现代调和分析,特别是Fourier限制性估计、微局部分析、拟微分算子与Fourier积分算子等融入几何的观念,在许多数学物理领域起着越来越重要的作用。本讲义用现代观点介绍调和分析的基本内容,特别是与偏微分方程研究密切相关的内容。主要涉及极大函数、频率空间分析(频率空间的调和分析)、多线性乘子理论、Calder n-Zygmund奇异积分算子的旋转方法。为体现调和分析与偏微分方程研究的紧密联系,还详细介绍了线性常系数偏微分方程的局部可解性与正则性、数学物理中的基本算子的基本解、非线性Schr dinger方程的散射理论、导数 Schr dinger方程的低正则性等应用。 本书是作者多年来培养研究生的内部讲义,特点是简洁而直奔主题,适合作为研究生的分析教材或年轻数学科研人员自学用书。
萨奥尔编著的《数值分析》介绍了现代数值分析中的重要概念与方法,包括线性和非线性方程与方程组的求解、数值微分和积分、插值、最小二乘、常微分方程与偏微分方程的求解、特征值与奇异值的计算、随机数与压缩方法,以及优化技术。全书穿插介绍了收敛、复杂度、条件、压缩和正交这5个数值分析中最重要的概念。 本书内容广泛,实例丰富,可作为自然科学、工程技术、计算机科学、数学、金融等专业人员进行教学和研究的参考书。
200多个例题中包括了一些比较新鲜有趣的问题,作为教材的补充也选择了一些帮助理解基本概念、掌握基本方法的问题.书末给出两个附录:附录一给出了南京大学出版社出版的《数学分析教程》(许绍溥、宋国柱等编)一书中*章到第十九章的总习题及其解答;附录二介绍了南京大学硕士研究生入学考试的数学分析试题(1992~2003年)及其解答。
本书是在作者十余年讲授数学分析、考研辅导、数学竞赛材料的基础上多次修订而成的.所选题目大部分是重点高校硕士研究生入学考试题目和重点高校教材中的经典题目,部分题目是全国大学生数学竞赛试题.本书采用分类讲解的方式,在讲解题目时一般采用分析 解答 备注的方式,使读者举一反三,触类旁通,有些题目给出多种解答方法以拓宽读者的思维.本书内容包括极限论、函数的连续性、一元函数微分学、一元函数积分学、级数论、多元函数微分学、含参变量积分、多元函数积分学.
本书主要研究了非线性协整理论的非参数检验与估计两个领域,包括非线性存在性、混沌与分形特征、非线性非平稳检验及非线性协整检验与估计等;梳理了这两个领域的研究脉络和框架。对我国货币各变量序列,以及我国与国际股市指数序列应用所给出的非线性协整理论的非参数方法进行了非线性存在性检验、混沌与分形特征检验、存在非线性的非平稳检验以及非线性协整检验与估计,得出了较此前学者们应用线性协整理论相关方法更一般的结论。本书不仅可以丰富和完善协整关系模型的理论和方法,而且有助于决策者更准确地把握经济和金融变量之间的相互作用和演化关系,更好地制定经济和金融政策进行宏观调控。
数据存在于特定的时间和空间中,其复杂的分层结构是一种普遍现象. 充分借助于数据的这一特点,可以大大提高统计分析的有效性. 本书致力于介绍复杂分层数据分析前沿知识,侧重于算法、仿真与实证研究. 内容主要包括:分层线性模型、分层广义线性模型、分层非线性模型、分层半参数模型和分层分位回归模拟等. 本书可作为统计学及其相关领域的本科生、研究生的教材,亦可供教师和科技人员参考。
该书旨在告诉大家复系统模型是如何建立的,并提供了不可或缺的工具去研究其动态。然而该书的重点不在于解释动态系统的理论,而是建模,因此呈现给大家的除了读者感兴趣的信息,还包括动态系统理论的主要结论、被忽略掉的技术性很强的定理。尽管动态系统方面取得了许多数学进展,例如微分方程和递推方程,但是与空间扩展系统相比,其理论还处在摇篮期。书中还给出了各学科方面的例证,从生态学到流行病学,再到社会学,再到地震学。
本书主要内容包括数据的描述性统计分析、非参数假设检验、方差分析、回归分析、主成分分析、因子分析、聚类分析、判别分析、时间序列分析等.书后附有SPSS基础.在介绍数据分析的基本理论与方法的同时,本书密切结合SPSS统计软件,系统、详细地介绍数据分析方法的具体操作过程及结果分析.
今天不等式在数学领域发挥着显著的作用,而且已经形成了一个非常活跃、引人注目的研究领域。与之前的研究不等式的书相比,该书讲述了许多新的内容,即使在对经典的不等式的讲述中,也添加了许多新研究。作者力求*限度的详尽,而且给出了尽可能多的相关参考资料。目次:引言;普通不等式;特殊不等式;人名索引;主题索引。
李殿璞编著的这本《非线性控制系统理论基础( 第2版)》讲授非线性系统理论。非线性系统理论与线性系统理论相平行、相对应,但更具一般性。非线性系统理论所使用的主要数学工具微分几何方法已被证明是分析和设计非线性系统的卓有成效的和强有力的工具。本书便于教学使用,内容由浅入深,概念清晰,理论严谨,有重新构建的更为合理的体系结构,侧重于系统地介绍基础理论,同时也兼顾实际应用。为使读者时刻掌握学习的主动性和更便于自学使用,本书除在每章节前对内容作概括介绍外,还对每个定理、命题、例题都给出方法提示或目标指示。 《非线性控制系统理论基础(第2版)》可作为理工科院校控制科学与工程学科、电气工程学科和诸多相关学科专业博士研究生和硕士研究生的教材,也可供初涉非线性理论领域的读者作为入门教材和自学教材使