本书是《普林斯顿 读本》系列图书的第二本,该套书的论述风格友好、平易近人,通过作者与读者之间的互动对话和相关示例非常清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两步式求解方法:首先展示如何回溯到求解问题的关键,之后说明如何严谨规范地写下解题过程。书中还给出了丰富的示例,帮助学生巩固所学知识。
本书根据J. R. 曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解与接受,本书采用将流形嵌入高维欧氏空间中的观点讲述,故而又在第九章给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形。
本书是Folland教授的名著《实分析》的第二版。与*版相比,在一些内容的编排上作了适当调整,同时引入了一些新的内容,去掉了已经过时的内容,更有利于学生学习与思考。作为一部优秀的教材,内容不仅涵盖了分析学的基本内容和技巧,还介绍了一些从事其他领域的研究工作所必需的基础知识。此外,教材中的大量习题,能够进一步拓展思维,从而易于更加深入地了解这些内容背后的真实想法。本书适用于理工类专业及相关专业的研究生。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981年第1版出版以来,到2015年已经修订、增补至第7版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,第二卷内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。与常见的数学分析教材相比,本卷内容相当新颖,系统地引进了现代数学(包括泛函分析、拓扑学和现代微
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。本书详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解本书的内容。
本书以复杂波动系统解的判定为背景,围绕初始值,研究如何找出弱解的**存在条件,优化适定性的区域和门槛结果,从而形成一个行之有效的判定方案。本书首先综述波动系统的分类、结构、研究背景和经典波动系统问题,进而详细地叙述与本书相关的初边值问题,以及本书用到的弱解理论和数值算法。在此基础上,本书研究了位势井框架下初始条件对波动系统整体适定性的影响,同时基于有限差分法和迭代原理对其中两类波动系统进行了数值算法的探讨。本书的研究内容对于解决物理和工程领域的实际问题,例如,光栅传感器的检测性能和桥梁的坚固度等具有重要的现实意义,同时在理论层面为复杂非线性系统的可解条件和适定性分析提供了可行方案,具有一定的科学价值。
本书是一部数学经典教材,初版于1965年,以作者在东京大学任教十余年所用的讲义为基础写成的。经过几次修订和增补,1980年出了第5版,本版(第6版)实际上是第5版的重印版。全书论述了泛函空间的线性算子理论及其在现代分析和经典分析各领域中的许多应用。目次:预备知识;半范数;Baire-Hausdorff定理的应用;正交射影和riesz表示定理;Hahn-Banach定理;强收敛和弱收敛;傅里叶变换和微分方程;对偶算子;预解和谱;半群的解析理论;紧致算子;赋范环和谱表示;线性空间中的其他表示定理;遍历性理论和扩散理论;发展方程的积分。 读者对象:数学专业的研究生和科研人员。
本书从该理论的最初起源 积分函数的最小化开始,对该理论做了较深的讨论。变分观点的发展很大程度上和优化、平衡、控制这些理论是紧密相关的。书中在一个统一的框架之中,全面讲述了经典分析和凸分析之外的变分几何和次微积分知识。也讲述了集收敛、集值映射和epi收敛、对偶和正则被积函数。目次:最大和最小;凸性;柱体;集合凸性;集值映射;变分几何;上境图极限;次梯度和次导数;Lipschitzian性质;次微积分;对偶化;单调映射;二阶理论;可测性。读者对象:数学专业的研究生、老师和相关的科研人员。In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis refiects this breadth. For a lon
现代调和分析,特别是Fourier限制性估计、微局部分析、拟微分算子与Fourier积分算子等融入几何的观念,在许多数学物理领域起着越来越重要的作用。本讲义用现代观点介绍调和分析的基本内容,特别是与偏微分方程研究密切相关的内容。主要涉及极大函数、频率空间分析(频率空间的调和分析)、多线性乘子理论、Calder n-Zygmund奇异积分算子的旋转方法。为体现调和分析与偏微分方程研究的紧密联系,还详细介绍了线性常系数偏微分方程的局部可解性与正则性、数学物理中的基本算子的基本解、非线性Schr dinger方程的散射理论、导数 Schr dinger方程的低正则性等应用。 本书是作者多年来培养研究生的内部讲义,特点是简洁而直奔主题,适合作为研究生的分析教材或年轻数学科研人员自学用书。
本书是《圆锥曲线习题集》的下册第1卷,内收有关椭圆的命题500道,抛物线的命题200道,双曲线的命题200边,综合命题100道,另有圆和直线的命题300道,全书合计1 300道,绝大部分是首次发表. 1 300道命题都是证明题,全部附图.全书分成5章45节,有些命题可供专题研究. 本书可作为大专院校师生和中学数学教师的参考用书,也可作为数学爱好者的补充读物.
《工科数学分析教程(上册)}是一本信息化研究型教材本书包括数列极限、函数极限与连续、导数的计算与应用、泰勒公式、不定积分、定积分的应用、广义积分、数项级数.本书体系内容由浅入深,符舍学生认知规律.每章都有提高课,内容包括混沌现象与极限、连续函数不动点定理以及应用、极值问题与数学建模、泰勒公式与科学计算、积分算子的磨光性质以及应用等系列内容,初步为学生打开现代数学的窗口.同时每章都设置了系列探索类问题,包括理论问题、应用问题,培养学生应用数学解决实际问题的能力.本教材有与之配套的MOOC 课程,充分利用多媒体信息技术,将复杂数学问题直观化,图文并茂视频课为读者营造一对一的视频授课环境,通过扫描教材中的二维码进入视频课的学习,使得学生对数学问题的理解更通透.
金光编著的《数据分析与建模方法》面向复杂统计问题求解和统计工程需求,介绍现代统计的基本原 理和方 法,内容涵盖经典统计、贝叶斯统计、统计学习等统 计理论以及计算密集型方法和探索性分析方法,涉及数据特征分析、模型参数推断 、回归分析建模和系统状态估 计等问题。每章后编配有习题。 《数据分析与建模方法》适合作为高等学校自动控制、管理科学与工程等专业的研究生或高年级 本科生教材,也可供从事数据分析与建模、装备试验 与评价、*信号处理等技术专题研究的科技工作者学习与参考。
维拉尼所著《*输运(第1分册)(英文版)》是全面讲述*输运——无论新老问题的专著。本书讲学严谨,基于大量的文献扩充改变而成,使得这本书成为一本相当有价值的宝典类书籍,证明完整自成体系,扩充了文献注解。适于*输运方面的每个科研人员和研究生,博士及以上的人员不需要预备知识可以完全读懂该书。
本书主要讲述索伯列夫空间一般理论和在非线性偏微分方程中的应用。内容涉及Lebesgue空间Lp(Ω)及其基本性质;整数阶索伯列夫空间Wm,p(Ω)及其性质;Wm,p(Ω)空间的嵌入定理、紧嵌入定理和插值定理以及连续函数空间的嵌入定理。论述研究非线性发展方程时,常用到的含有时间的空间和含有时间的索伯列夫空间。介绍类似于索伯列夫空间嵌入定理的离散函数的插值公式,并利用离散函数的插值公式证明广义Schrodinger型方程组初边值问题整体广义解的存在**性。讲述速降函数、缓增广义函数以及它们的Fourier变换和Lebesgue空间的Fourier变换,分数阶索伯列夫空间HS(N)和HS(Ω)及其性质。介绍近年来国内外关注的几个非线性发展方程的初边值问题和Cauchy问题解的存在**性以及解的爆破现象和解的渐近性质,使读者较快地利用索伯列夫空间这个有力理论工具,进入
数据存在于特定的时间和空间中,其复杂的分层结构是一种普遍现象. 充分借助于数据的这一特点,可以大大提高统计分析的有效性. 本书致力于介绍复杂分层数据分析前沿知识,侧重于算法、仿真与实证研究. 内容主要包括:分层线性模型、分层广义线性模型、分层非线性模型、分层半参数模型和分层分位回归模拟等. 本书可作为统计学及其相关领域的本科生、研究生的教材,亦可供教师和科技人员参考。