《中学数学解题前沿方法荟要:解方程及方程组的方法》以通俗的语言、简洁流畅的叙述,针对解方程及方程组方法的问题,分别归类介绍各自的解题方法与技巧,并予以适当的点评例说,以便触类旁通.这种分类介绍的解题方法,我们将其称为解题的“个类方法”.
CIMPA-UNESCO-CHINA暑期学校“自守形式与L-函数”于2010年8月1日至14日在山东威海校区举办,该国际暑期学校受联合国教科文组织资助,邀请的演讲人都是本领域的专家。刘建亚主编的《自守形式与L-函数》汇集了这次暑期学校以下演讲人的讲义:J.Cogdell,G.Harcos,李小青,P.Michel,A.Reznikov,F.Shahidi以及叶扬波。《自守形式与L-函数》涵盖自守形式、L-函数、谱理论及表示理论等方面的内容,既给出了自守形式与L-函数很好的介绍,也指出了其算术应用。《自守形式与L-函数》不仅是本领域专家们有价值的参考书,也是研究生开展研究时极好的入门书。
布朗、丘吉尔编著的《复变函数及应用(英文版 第9版)》是复分析入门教材,内容丰富,写作精炼 ,论证严密。阐述了复变函数的理论及应用,还介绍 了留 数及保形映射理论在物理、流体及热传导等边值问题 中的应用。第9版对第8版做了全面修订,重新组织了 内 容,增加了很多新的示例和习题,更加方便教学。 这本畅销全世界的经典教材初版于20世纪40年代 ,被国外众多名校广泛采用,如美国斯坦福大学、加 州理工学院、加州大学伯克利分校、佐治亚理工学院 、普度大学、达特茅斯学院、南加州大学等。前几版 曾 被译成日语、西班牙语、阿拉伯语、希腊语、韩语等 众多版本,对复变函数的教学影响深远。
老大中编著的《变分法基础(第3版)》是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。本书内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法、力学中的变分原理及其应用以及含向量、张量和哈密顿算子的泛函变分问题。其中许多内容是作者多年来的研究成果,特别是提出完全泛函的极值函数定理,统一了变分法中的各种欧拉方程,创立含向量、向量的模、任意阶张量和哈密顿算子的泛函的变分理论,给出相应的欧拉方程组及自然边界条件,扩大了变分法的应用范围。本书也可供
老大中编著的《变分法基础(第3版)》是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。本书内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法、力学中的变分原理及其应用以及含向量、张量和哈密顿算子的泛函变分问题。其中许多内容是作者多年来的研究成果,特别是提出完全泛函的极值函数定理,统一了变分法中的各种欧拉方程,创立含向量、向量的模、任意阶张量和哈密顿算子的泛函的变分理论,给出相应的欧拉方程组及自然边界条件,扩大了变分法的应用范围。本书也可供
《数学解题与研究丛书:集合、函数与方程》是一部数学教学参考用书,共分为两部分:集合与逻辑、函数与方程,系统、详尽地阐述了数学解题技巧,有理论、有实践。《数学解题与研究丛书:集合、函数与方程》注重科学性、系统性和趣味性,全书共含50篇小文章,每篇文章各自独立成文,所以《数学解题与研究丛书:集合、函数与方程》可系统性地研读,也可有选择性地阅读。《数学解题与研究丛书:集合、函数与方程》可作为高三复习备考用书,也可供中学、师生及初等数学爱好者研读,或作为数学竞赛辅导资料和师范数学教法方面的。
《中学数学解题前沿方法荟要:解方程及方程组的方法》以通俗的语言、简洁流畅的叙述,针对解方程及方程组方法的问题,分别归类介绍各自的解题方法与技巧,并予以适当的点评例说,以便触类旁通.这种分类介绍的解题方法,我们将其称为解题的“个类方法”.
老大中编著的《变分法基础(第3版)》是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。本书内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法、力学中的变分原理及其应用以及含向量、张量和哈密顿算子的泛函变分问题。其中许多内容是作者多年来的研究成果,特别是提出完全泛函的极值函数定理,统一了变分法中的各种欧拉方程,创立含向量、向量的模、任意阶张量和哈密顿算子的泛函的变分理论,给出相应的欧拉方程组及自然边界条件,扩大了变分法的应用范围。本书也可供
《数学解题与研究丛书:集合、函数与方程》是一部高中数学教学参考用书,共分为两部分:集合与逻辑、函数与方程,系统、详尽地阐述了高中数学解题技巧,有理论、有实践。《数学解题与研究丛书:集合、函数与方程》注重科学性、系统性和趣味性,全书共含50篇小文章,每篇文章各自独立成文,所以《数学解题与研究丛书:集合、函数与方程》可系统性地研读,也可有选择性地阅读。《数学解题与研究丛书:集合、函数与方程》可作为高三复习备考用书,也可供中学、大学师生及初等数学爱好者研读,或作为高中数学竞赛辅导资料和师范大学数学教材教法方面的教材。
布朗、丘吉尔编著的《复变函数及应用(英文版 第9版)》是复分析入门教材,内容丰富,写作精炼 ,论证严密。阐述了复变函数的理论及应用,还介绍 了留 数及保形映射理论在物理、流体及热传导等边值问题 中的应用。第9版对第8版做了全面修订,重新组织了 内 容,增加了很多新的示例和习题,更加方便教学。 这本畅销全世界的经典教材初版于20世纪40年代 ,被国外众多名校广泛采用,如美国斯坦福大学、加 州理工学院、加州大学伯克利分校、佐治亚理工学院 、普度大学、达特茅斯学院、南加州大学等。前几版 曾 被译成日语、西班牙语、阿拉伯语、希腊语、韩语等 众多版本,对复变函数的教学影响深远。
传统的分布式应用不会切入微服务、快速数据及传感器网络的响应式世界。为了捕获这些应用的动态联系及依赖,我们需要使用另外一种方式来进行领域建模。由纯函数构成的领域模型是以一种更加自然的方式来反映一个响应式系统内的处理流程,同时它也直接映射到了相应的技术和模式,比如Akka、CQRS以及事件溯源。本书讲述了响应式系统中建立领域模型所需要的通用且可重用的技巧——首先介绍了函数式编程和响应式架构的相关概念,然后逐步地在领域建模中引入这些新的方法,同时本书提供了大量的案例,当在项目中应用这些概念时,可作为参考。