本书涵盖非线性规划的主要内容,包括无约束优化、凸优化、拉格朗日乘子理论和算法、对偶理论及方法等,包含了大量的实际应用案例. 本书从无约束优化问题入手,通过直观分析和严格证明给出了无约束优化问题的*性条件,并讨论了梯度法、牛顿法、共轭方向法等基本实用算法. 进而本书将无约束优化问题的*性条件和算法推广到具有凸集约束的优化问题中,进一步讨论了处理约束问题的可行方向法、条件梯度法、梯度投影法、双度量投影法、近似算法、流形次优化方法、坐标块下降法等. 拉格朗日乘子理论和算法是非线性规划的核心内容之一,也是本书的重点.
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分. 第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题. 第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法. 第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相关
布朗、丘吉尔编著的《复变函数及应用(英文版 第9版)》是复分析入门教材,内容丰富,写作精炼 ,论证严密。阐述了复变函数的理论及应用,还介绍 了留 数及保形映射理论在物理、流体及热传导等边值问题 中的应用。第9版对第8版做了全面修订,重新组织了 内 容,增加了很多新的示例和习题,更加方便教学。 这本畅销全世界的经典教材初版于20世纪40年代 ,被国外众多名校广泛采用,如美国斯坦福大学、加 州理工学院、加州大学伯克利分校、佐治亚理工学院 、普度大学、达特茅斯学院、南加州大学等。前几版 曾 被译成日语、西班牙语、阿拉伯语、希腊语、韩语等 众多版本,对复变函数的教学影响深远。
老大中编著的《变分法基础(第3版)》是变分法方面的专著,书中系统地介绍变分法的基本理论及其应用。 编写本书的目的是希望为高等院校的研究生和高年级大学生提供一本学习变分法课程的教材或教学参考书,使他们能够熟悉变分法的基本概念和计算方法。本书内容包括预备知识、固定边界的变分问题、可动边界的变分问题、泛函极值的充分条件、条件极值的变分问题、参数形式的变分问题、变分原理、变分问题的直接方法、力学中的变分原理及其应用以及含向量、张量和哈密顿算子的泛函变分问题。其中许多内容是作者多年来的研究成果,特别是提出完全泛函的极值函数定理,统一了变分法中的各种欧拉方程,创立含向量、向量的模、任意阶张量和哈密顿算子的泛函的变分理论,给出相应的欧拉方程组及自然边界条件,扩大了变分法的应用范围。本书也可供
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分. 第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题. 第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法. 第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换
开启导航,查找朋友发来的聚会地址;打开电视,关注近期的天气状况……我们习以为常的生活离不开一样东西——火箭。火箭穿梭于地球和太空之间,代表了全人类科技发展的至高水平,直观体现着一个国家的综合国力。? ??????《火箭的科学》是日本全国学校图书馆协会选定图书,是一本一目了然、图文并茂的火箭知识入门,用严谨又易懂的文字,配上300多幅插图全彩印刷,让人3分钟就能看明白1种火箭,详细解释了火箭是怎样飞上天的,以及火箭的历史、现状与前景,介绍了如长征、联盟号、大力神号等10多个国家地区60多种主要火箭和它们背后的故事。
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分.第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题.第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法.第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相关,是处理某
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分.第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题.第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法.第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相关,是处理某
开启导航,查找朋友发来的聚会地址;打开电视,关注近期的天气状况……我们习以为常的生活离不开一样东西——火箭。火箭穿梭于地球和太空之间,代表了全人类科技发展的至高水平,直观体现着一个国家的综合国力。???????《火箭的科学》是日本全国学校图书馆协会选定图书,是一本一目了然、图文并茂的火箭知识入门,用严谨又易懂的文字,配上300多幅插图全彩印刷,让人3分钟就能看明白1种火箭,详细解释了火箭是怎样飞上天的,以及火箭的历史、现状与前景,介绍了如长征、联盟号、大力神号等10多个国家地区60多种主要火箭和它们背后的故事。
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分.第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题.第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法.第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相关,是处理某
本书以“自然观察”为主题,以新颖的视角切入,完美地将艺术性、知识性融于一体,以精彩直观的图片彰显大自然之美,以生动的文字传递自然科学的魅力讲述自然世界的生物百态。内容深入浅出,带领小读者亲近大自然,享受发现与探索的乐趣。
开启导航,查找朋友发来的聚会地址;打开电视,关注近期的天气状况……我们习以为常的生活离不开一样东西——火箭。火箭穿梭于地球和太空之间,代表了全人类科技发展的至高水平,直观体现着一个国家的综合国力。???????《火箭的科学》是日本全国学校图书馆协会选定图书,是一本一目了然、图文并茂的火箭知识入门,用严谨又易懂的文字,配上300多幅插图全彩印刷,让人3分钟就能看明白1种火箭,详细解释了火箭是怎样飞上天的,以及火箭的历史、现状与前景,介绍了如长征、联盟号、大力神号等10多个国家地区60多种主要火箭和它们背后的故事。
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分.第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题.第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法.第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相关,是处理某