本书是一本常微分方程本科生教材,传统意义的微分方程是讲解求解微分方程解析解的特殊技巧,本书的特别之处在于首先将数学建模贯穿全书,然后以不同的方法进行解的表达,在解的裹达中,不仅仅限于解析解,主要以定性为主,通过斜率场、解的图像、相平面上的向量场及轨线等工具,到达对解的渐近行为的最好理解,最后以数值方法与计算机模拟为工具加深对解的行为的直觉理解.全书的图形演示课件可焱陆本书指明的课程网站下载.全书分5章,主要包括一阶微分方程、一阶二维微分方程组、二阶线性常系数徵分方程、一阶二维非线性方程组和一阶n维线性微分方程组.
本书共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与最值的相关应用。
本书共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与最值的相关应用。
本书共有七章,分别为勾股数的性质及其应用,佩尔方程及其应用,无穷递降法,指数中含有未知数的一些特殊的不定方程(组),几何问题中的不定方程,其他一些特殊不定方程的解法,数学竞赛中与不定方程(组)相关的问题。 本书适合大学师生及数学爱好者参考使用。
《同济博士论丛 多复变亚纯函数及亚纯映射的*性定理》以多复变数的亚纯函数与亚纯映射的*性问题为研究对象。首次尝试讨论了涉及超曲面的亚纯映射*性问题,得到一个*性定理。
本书详细而全面地介绍了初等函数的相关概念、研究方法及初等函数趣题,并详细介绍了初等函数的各种性质、函数题常用的解题方法及函数题的一题多解,供读者参考。
《实变函数论专题梳理与解读(面向21世纪普通高等教育规划教材)》共分7章,每一章由四个部分组成:内容小结、要点分析、例题选讲、习题解答。其中,在“例题选讲”中精选了若干有针对性的例题,每一个例题都对所给的条件进行分析,寻找和发现解题的思路,给出了详尽的解题过程;在“习题解答”中详细解答了徐新亚编写的《实变函数论》中的所有习题。 全书选题多样,难度配置合理,注重分析推理,题目叙述清晰、论证严密,注意对分析能力与研究能力的培养,尤其是对创造性能力的培养。本书可作为综合性大学、理工科大学、高等师范院校数学系数学、概率统计和应用数学专业学生的学习辅助用书。对从事数学分析、实变函数教学工作的青年教师是一部实用的教学参考书。