这本生动、简洁的书基于作者在莫斯科大学力学数学系的本科生课程讲义,涵盖了计算的一般理论的基本概念。《可计算函数》从可计算函数的定义和一个算法开始,讨论了可判定性、可数性、通用函数、编号系统及其性质、m-完全性、不动点定理、算术分层、oracle计算、不可判定性的度。作者还介绍了一些特殊的函数模型,如Turing机和递归函数。 《可计算函数》可供数学和计算机专业的本科生阅读,也可供所有希望学习计算的一般理论的基础知识的数学家和程序员使用。
本书系统介绍了复变函数的基本理论,包括复数的运算、复变函数的概念、解析函数的概念、解析函数的柯西积分理论、魏尔斯特拉斯级数理论、黎曼共形映射理论以及解析函数空间的有趣介绍等,体现了基本的复分析思想方法,适合于从事国际热门的解析函数空间上函数理论研究和算子理论研究的研究生在本科阶段的基本素养的培养。由于函数空间理论密切联系于工科电子通信类学科的信息处理与信号处理研究,故而也适合于电子通信类学科的面上公共课“复变函数”课程的教学。
《极值与*值(下卷)》共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与*值的相关应用,变量代换法是求函数极值与*值的方法之一,它可使问题简化,本文对此进行了探讨。《极值与*值(下卷)》适合中学师生及广大数学爱好者阅读学习。
《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙述严谨、清晰、易懂。《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》适合于高等院校数学与应用数学专业学生学习,也可供数学爱好者及教练员作为参考。
《数林外传系列:凸函数与琴生不等式》将中学阶段的大量初等不等式进行了较系统的归类和介绍,阅读本书可以开拓读者在不等式方面的视野,提高对不等式的认知和解决同类问题的能力,《数林外传系列:凸函数与琴生不等式》适合中学数学教师和对不等式感兴趣的高中学生。 本书以凸函数与琴式不等式为纲,将中等数学中的二百多个有趣的不等式有序地组织起来,可以大大拓广高中学生、中学数学老师在不等式方面的视野,有利于提高高中学生在不等式方面的数学修养。而不等式是高校自主招生、高考、数学竞赛中不可缺少的内容。全书资料主要来源有两部分,一部分取自国外英文中等数学杂志,另一部分是作者自编的,取自英文中等数学杂志的题目的解答很多都由作者改写,目的是降低阅读目槛,使具有高一数学知识的学生能读懂全书。本书一个鲜
本书详细而全面地介绍了初等函数的相关概念、研究方法及初等函数趣题,并详细介绍了初等函数的各种性质、函数题常用的解题方法及函数题的一题多解,供读者参考。
《复变函数与积分变换(英文版)》是一本用于同名课程双语教学的英文教材,编者参考多本有关的经典原著英文教材,按照国家*对《复变函数与积分变换(英文版)》的基本要求,结合多年的教学实践编撰而成.内容分两部分,共8章。第1~6章为复变函数部分,包括complex numbers and functions of a complex variable(复数与复变函数),analytic functions(解析函数),complex integrals(复积分),series(级数),residues(留数),conformal mappings(保形映射)。第7章和第8章是积分变换部分,包括Fourier transform(傅里叶变换)和Laplace transform(拉普拉斯变换)。《复变函数与积分变换(英文版)》各章节都安排了足够量的例题,在每章后也安排了大量精选的习题,并按大纲的要求及难易程度分为A、B两类。
《复变函数与积分变换同步学习辅导(第二版)》是《复变函数与积分变换(第三版)》(哈尔滨工业大学数学教学丛书,科学出版社,2014)—书的教学辅导与学习参考书,可与《复变函数与积分变换同步学习辅导(第二版)》配套使用。 《复变函数与积分变换同步学习辅导(第二版)》共分8章。每章包括内容提要、典型例题剖析、测试题及其解答等四部分,而且每章的后一部分都对《复变函数与积分变换(第三版)》一书相应章节的习题作出了详细的解答。
本书是华中科技大学数学与统计学院编写的《数学物理方程与特殊函数(第三版)》,在第二版的基础上经过多年教学实践,广泛吸取使用意见编写而成。第三版相对于第二版在结构上有较大的改进,在内容取舍上进行了更新和充实。本书以讲解方法为主线,层次分明、逻辑清晰、便于自学。全书共分七章,内容包括:绪论、分离变量法、行波法与积分变换法、格林函数法、贝塞尔函数、勒让德多项式以及埃尔米特多项式等,书后新增 几类线性常微分方程的求解 常用积分变换表 和 函数 三个附录。
本书对于复变函数给予了更深层次的介绍,总结了一些计算复变函数的常用方法和惯用技巧,叙述严谨、清晰、易懂。
本书共 7 章 : 第 1 章 , 介绍了初等关联函数扩展研究的背景 ; 第 2 章 , 介绍了基元 、 可拓集等知识 ; 第 3 章 , 对初等关联函数进行了扩展研究 ; 第 4 章 , 建立了基于三区间套下不确定型初等关联函数的可拓安全预警模型 ; 第 5 章 , 建立了基于二区间套下确定型初等关联函数的露天矿边坡危险度可拓安全评价模型 ; 第 6 章 , 利用可拓学理论建立了煤层自然危险性判别模型 ; 第 7 章 , 建立了基于三区域套下不确定型初等关联函数的煤与瓦斯预警可拓模型 。
本书从实变函数论的发展简史出发,深入浅出地阐述了实变函数论的基本理论、基本问题和基本方法.本书共分为六章,内容包括: 实变函数论发展简史、集合与点集、可测集、可测函数、勒贝格积分理论和勒贝格意义下的微分与不定积分等.本书各部分主题鲜明,逻辑性强,内容的讲解由浅入深,对基本概念的阐述透彻,着力将每个知识点与中学数学的知识及已经学过的大学其他数学课程(例如数学分析)联系起来,便于读者比较与加深理解,增加对知识背景的认识.书中也极力渗透拓扑学思想及较勒贝格积分理论更加一般的积分理论,为后续课程的学习奠定基础.书中每节配有适量的习题,其中既有对易于混淆的基础知识的考查,也有更为深刻的结果.书末附有习题答案与提示,便于教师教学和学生自学. 本书既可作为高等院校数学与应用数学专业实变函数论
本书内容经典,教材体系、内容安排、例题习题配置经过40年的反复锤炼,已被高校教师广泛认可。本次修订在保留原有特色和结构的前提下,作如下修改:修改了一些不够严谨或者不够清晰的表述,删除了一些较难的内容;增加教材与辅导书的关联性,在教材适当的位置提示学生参考辅导书进行学习,以更好的发挥辅导书的作用。
《工程数学:积分变换(第六版)》介绍Fourier变换和IAplace变换这两类积分变换的基本内容及其某些应用,初版于1978年,再版于1982年,三版于1989年,四版于2003年,五版于2012年。本次修订在基本保持第五版的系统和结构的基础上,增添了一些内容,特别是 积分变换的MATLAB运算 (第三章),并加强了该书的实用性和灵活性,以适应不同专业和不同层次的要求,书中的例题与习题也作了适量的补充与调整。书后附有Fourier变换简表和Laplace变换简表,可供读者学习时查用。书中给出的习题答案可供参考。 《工程数学:积分变换(第六版)》可供高等学校非数学类专业本科生选作教材,也可作为工科研究生的教材或教学参考书,亦可供广大工程技术人员和科研工作者参考。
本书根据*“复变函数与积分变换”非数学类课程的教学基本要求编写而成,主要内容有:复数与复变函数、解析函数、复变函数的积分、级数、留数、共形映射、Fourier变换和Laplace变换。本书从应用型本科学生的实际出发,对基本概念的引人尽量采用启发式的方法,力求理论高度不降低、推导过程简单明了、重点突出、难点分散。书中每节后配有精选的习题,每章后配有总习题,书末附部分习题参考答案。
本书是引导学生对泛函分析深入学习、研究的入门书,通过一系列例题论述了线性基的维数;描述了准赋范线性空间与赋范线性空间之间的差异;以及判断赋范线性空间为内积空间的平行四边形法则;给出了赋范线性空间有限维与无限维差异方面的一个判定准则 . 我们还论述了具有不动点性质的各种典型拓扑空间;详细证明了开映射定理、 Banach 逆算子定理、共鸣定理和著名的闭值域定理;后,还深入研究了全连续(紧)算子谱理论的 Riesz-Schauder 理论 . 本书可作为理工科大学、师范大学、师范学院数学系学生的入门参考书,也可作为大学数学教师与数学工作者的参考书 .
《复变函数与积分变换》是复变函数与积分变换课程教材,介绍复变函数与积分变换的基本概念、理论和方法. 主要内容包括:复数与复变函数、解析函数、复变函数的积分、级数、留数、Fourier 变换、Laplace 变换、Matlab 在复变函数与积分变换中的应用等. 每章给出本章小结,颇具特色. 各章后配有适量习题,书末附习题参考答案,便于读者复习和总结. 《复变函数与积分变换》突出应用性,力求讲解细致、通俗易懂,加强数学软件在课程教学中的作用.
《函数方程及其解法》包括了函数方程的理论和应用。特别强调了像普特南竞赛和国际数学奥林匹克中的函数方程题目的解法。《函数方程及其解法》对准备参加普特南竞赛和准备参加各类全国或国际数学竞赛而希望提高自己的解题技巧的大学生或中学生是特别有用的,那些对参赛学生进行辅导和训练的数学工作者也可在《函数方程及其解法》中找到培训函数方程问题的有价值的材料。
本书是普通高等工科院校基础课规划教材之一,内容包括高等教育工科各专业所需要的复变函数和积分变换的基础知识。主要有复数与复变函数、解析函数、复变函数的积分、级数、留数、保角映射、傅里叶变换和拉普拉斯变换等。每章末附有小结和自测题,以便于读者自学时能够抓住重点和检查自己对本章学习的基本情况。书末附有习题答案和参考书目。 本书在编写过程中力求做到条理清楚、重点突出,注重解题方法的训练和思维能力的培养。本书可以作为高等教育工科各专业该课程的教材,亦可作为其他专业学习这门课程的教学参考书。本书使用学时建议为48~64学时。
本书包括六章内容,第1章介绍距离空间的基本概念,并介绍了压缩映射原理及其对于微分方程理论的应用。第2章介绍线性赋范空间的基本概念以及线性赋范空间上的线性算子。第3章介绍内积空间的概念。第四章介绍线性算子和线性泛函的基本理论,包括Baire纲推理的方法,开映射定理,逆算子定理,闭图像定理,一致有界原理(共鸣定理),以及Hahn-Banach的连续线性泛函保范延拓定理。第五章讲述共轭空间和伴随算子,详细介绍了一致连续函数空间的共轭空间,P次可积函数空间的共轭空间。。第六章讲述紧算子,全连续算子的概念。每节后均配有习题。书后附有名词索引。本书可供综合大学和高等师范院校数学专业做为教材或教学参考书
本书是数学系高年级本科生或工科研究生的泛函分析课程入门教材. 全书主要内容有:度量空间、紧性、线性赋范空间、压缩映射原理、凸集与不动点、内积空间、线性算子和线性泛函的定义、Baire纲推理、开映像定理、线性泛函延拓定理、共轭空间、弱收敛、自反空间、Riesz定理及其应用、Lp的共轭空间、线性空间上的微分学、谱的概念和基本性质、紧算子及其谱性质、投影算子、自伴算子、正常算子和酉算子、Hilbert空间上的紧自伴算子、谱定理、解析泛函演算等. 每节后配有练习,书后配有名词索引. 本书可作为相关课程教材,也可作为教师和研究人员的参考书.
《数学解题与研究丛书:集合、函数与方程》是一部高中数学教学参考用书,共分为两部分:集合与逻辑、函数与方程,系统、详尽地阐述了高中数学解题技巧,有理论、有实践。《数学解题与研究丛书:集合、函数与方程》注重科学性、系统性和趣味性,全书共含50篇小文章,每篇文章各自独立成文,所以《数学解题与研究丛书:集合、函数与方程》可系统性地研读,也可有选择性地阅读。《数学解题与研究丛书:集合、函数与方程》可作为高三复习备考用书,也可供中学、大学师生及初等数学爱好者研读,或作为高中数学竞赛辅导资料和师范大学数学教材教法方面的教材。