本书是一本非常有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用最简单、最有趣、最容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你更通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得更从容自信。
本书是作者多年在复旦大学讲授“数学分析原理”课程的讲义基础上编写而成的。全书共7章,内容包括:分析基础、实数系基本定理,极限与连续,微分,积分,级数,多元函数微积分,反常积分和含参变量积分。教材注重思想性,在内容上尽量做到融会贯通,突出理论的严密性,同时每章都精选了例题与习题。
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
拟微分算子理论自20世纪中叶形成以来,经过几十年的发展已成为现代分析理论的重要组成部分,并特别在偏微分方程理论及相关问题的研究中成为必不可少的工具。本书详细介绍了拟微分算子的基本理论及其在偏微分方程中的应用,为基础数学与应用数学专业的研究生、教师及相关研究人员提供了宝贵的参考。本次修订少量更新了部分章节内容并增加了后记。 本书既是这一领域的一本入门书,又介绍了该理论在偏微分方程中几个最重要方面的应用,可为读者进一步学习与研究做准备。
《微积分学教程(第1卷)(第8版)》是一部卓越的数学科学与教育著作。自*版问世50多年来,本书多次再版。至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一。并被翻译成多种文字,在世界范围内广受欢迎。 本书所包括的主要内容是在20世纪初*后形成的现代数学分析的经典部分。本书*卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。 本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。 本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学
本书从常识性的平凡道理出发, 不用极限概念也不用无穷小概念, 直截了当地定义了函数的导数, 证明了导数的常用性质; 定义了定积分, 推出了微积分基本定理. 严谨而不失直观的推理, 颠覆了微积分必须以极限概念为基础的传统观点. 全书共 18 章, 前 10 章用作者发现的新方法构建了一元微积分的逻辑框架; 后 8 章阐述新方法与传统体系的关系和接轨的方案, 以及一些重要的微积分知识. 本书化解了传统微积分教学的若干最大难点, 为建立高中和大学的微积分新体系描绘了蓝图.
本书根据S.Kobayashi and K.Nomizu 所著的Foundations of Defferential Geometry (Wiley & Sons公司出版的Wiley经典文库丛书(1996 版)(第一卷)译出。本卷首先给出了若干必要的预备知识,主要包括微分流形、张量代数与张量分析、Lie群和纤维丛等。本卷的中心内容是联络理论,不仅论述了一般联络理论,还具体讲述了线性联络、仿射联络、黎曼联络等。然后讲述了曲率形式和空间形式以及各种空间变换。此外,本卷还给出了7个附录和11个注释,分别介绍了若干备查知识和历史背景材料。
本书介绍了常微分方程理论中一些的基础知识,内容包括常微分方程的初等积分法、解的存在**性、解关于初值和参数的连续依赖性和连续可微性、解析微分方程解析解的存在性及其应用、微分方程组的可积理论及其在求解偏微分方程中的应用、常系数线性微分方程和微分方程组的解法及其在平面微分方程组局部结构研究上的应用、变系数线性微分方程组的Floquet理论、Sturm-Liouville边值问题及其在波动方程和热传导方程求解中的应用、微分方程解的稳定性判定、极限环存在性的基础知识,并简要介绍了结构稳定性和分支理论的基础知识。书中还介绍了如何利用Mathematica软件求解微分方程和作平面微分系统的相图。书末给出Ascoli-Arzelà引理的初等证明和实矩阵对数存在性的证明。
本书系统讲述了偏微分方程一般理论的主要结果和研究方法。主要内容包括:实分析与泛函分析在Sobolev空间中的应用,整数次与分数次Sobolev空间的基本性质和基本技巧,如逼近理论、紧嵌入理论、迹定理、单位分解等基本理论以及局部化、平直化、光滑化和紧支化等技巧,二阶线性椭圆方程的各类边值问题弱解的存在唯一性、正则性、极值原理、Schauder理论等方面的主要结果以及泛函方法、特征值方法、差商方法等现代偏微分方程方法和De Giorgi迭代技巧,二阶线性抛物方程和二阶线性双曲方程的基本理论,弱解的存在唯一性、正则性,能量方法,Galerkin方法,Lions定理与发展方程以及线性抛物型方程的Schauder理论和Lp理论,一阶线性双曲型方程式的特征线方法,一阶线性双曲型方程组的基本概念和对称双曲系统的黏性消失法等。
本书是常微分方程理论、方法与应用有机结合的一本教材,保持了我国现行教材理论性强、方法多样、技巧和实例丰富等特点,并结合国外教材强调建模、应用和计算机等特点,形成理论、方法、建模、应用、计算机互相渗透与补充的新体系。不仅能够训练学生严密的数学思维方式,而且可以引导学生通过建立数学模型解决实际问题。既讲述求解各类微分方程解析解、数值解的方法,又介绍用计算机进行理论分析、求解方程和给出图形显示的过程。本书的主要内容包括求解各类微分方程的方法,常微分方程的基本理论、近似方法及其实现,以及建立微分方程模型解决实际问题。
本书由上海财经大学数学学院编写,系高等院校经济管理类专业师生使用的经济数学教材。 全书共分九章:函数与极限,导数与微分,中值定理与导数的应用,不定积分,定积分及其应用,多元函数微分法,二重积分,无穷级数,微分方程与差分方程。本书科学、系统地介绍了高等数学的基本内容,重点介绍了微积分的方法及其在经济管理中的应用,每章末均附有习题,书末附有习题的参考答案。 本书可作为高等院校经济管理类专业的数学基础课教材之一,也可作为财经类高等教育自学考试、函授、夜大学的教材以及财经管理人员的学习参考书。
本套书由《微积分Ⅰ》、《微积分Ⅱ》两《微积分II》组成。《微积分Ⅰ》内容包括极限与函数的连续性、导数与微分、导数的应用、不定积分、定积分及其应用、广义积分、向量代数与空间解析几何。在附录中简介了行列式和矩阵的部分内容。《微积分Ⅱ》内容包括多元函数微分学、二重积分、三重积分及其应用、曲线积分、曲面积分、场论初步、数项级数、幂级数、傅里叶级数、广义积分的敛散性的判别法、常微分方程初步等。本套书继承了微积分的传统特色,内容安排紧凑合理,例题精练,习题量适难易恰当。 本套书可供综合性大学、理工科大学、师范院校作为教材,也可供相关专业的工程技术人员参考阅读。
本书以培养学生的专业素质为目的,充分吸收多年来教学实践和教学改革成果而编写的。其主要特点是把数学知识和经济学、管理学的有关内容有机结合起来,融经济、管理于数学,培养学生用学生数学知识和方法解决实际为的能力。 本书内容主要包括一元函数、极限与连续、一元函数微分学及其应用、一元函数积分学及其应用、空间解析几何、多元函数及其微分法、重积分、常微分方程、无穷级数等。本书内容全面、结构严谨、推理严密、详略得当,例题丰富,可读性、应用性强,习题足量,难易适度,简化证明,注重数学知识的应用性。
该书稿是《微积分(经管类 简明版 第五版)》配套的辅导书。该系列教辅书均根据教材章节顺序建设了相应的学习辅导内容,其中每一节的设计中包括了该节的主要知识归纳、典型例题分析与习题解答等内容,而每一章的设计中包括了该章的教学基本要求、知识点网络图、题型分析与总习题解答,有助于学生巩固教材知识并拓展应用。
本书是论述不等式的理论与方法的一本专门若作,主要围绕着若干著名的经典不等式,从它们的证明方法,相互之间的联系以及它们的应用等几个方面加以系统地论述. 本书可供不等式研究工作者以及高等师范类院校数学教育专业的学生和数学爱好者参考阅读.
本书按照一般的微积分学教材的编排方式,系统地论述了基于MATLAB 语言编程的方法来实现微积分问题的求解。全书内容包括函数与序列的描述及图形绘制、极限问题的求解、导数与微分问题的求解、积分问题的求解、函数的逼近与级数求和、数值导数与数值积分等。此外,书中还概括性地介绍了积分变换、分数阶微积分等内容。 本书可以作为高等学校理工科各类专业的本科生与研究生学习计算机数学语言(MATLAB)的教材,也可以作为一般读者学习微积分学的辅助教材,帮助读者从另一个角度认识微积分学问题的求解方法,并可以作为查询微积分数学问题求解方法的工具书。
In 8 years after publication of the first version of this book,the rapidly progressing field of inverse problems witnessed changes and new developments Parts of艾赛科威专著的《偏微分方程中的逆问题(第2版)》were used at several universities.and many colleagues and students as well asmyselfobserved several misprintsandimprecisions Some ofthe research problems from the first edition have been solved This edition serves the purposes of reflecting these changes and making appropiate corrections 1 hope that these additions and corrections resulted in not too many new errors and misprints Chapters I and 2 contain only 2-3 Pages of new materiaIJike in sections 1.5. 2 5 Chapter 3 order equations and included bound……
本书系统地阐述了偏微分方程数值解法的理论基础及其在土建类专业中的应用。全书分有限差分法、变分法与加权余量法、有限元法以及有限体积法四章。本书起点较低,并不一味追求数学的严密性和逻辑性,而是尽量为读者提供偏微分方程数值解法的有关基本概念、基本原理和解决实际问题的方法与步骤,层次清晰,深入浅出,便于自学。 本书可作为高等学校工科相关专业的本科教材,也可供工科专业研究生、教师和广大科技人员参考。
本书依据*委托北京大学和中国人民大学等有关院校拟订的《经济管理学科数学基础教学大纲》(草案)对一元和多元微积分(包括无穷级数和常微分方程,差分方程)的基本内容作了系统的论述,重点阐述了微积分的概念和方法在经济和管理中的应用,配有较多的例题和不同层次的习题,其中有些是历届经济管理类专业的研究生入学考试试题。书中概念的引入富有启发性,理论的展开自然而流畅。本书还以很少的篇幅介绍了微积分发展过程中的一些重要史实和有关数学家的生平。