本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
本书是一本非常有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用最简单、最有趣、最容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你更通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得更从容自信。
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
微分几何讲义(修订版)
本书主要介绍了复数、复变量、复变函数、微分方程、重积分、线积分、傅里叶级数、C.A.恰普雷金院士的微分方程近似积分法等知识,其中着重介绍了重积分及其在几何学中的应用,同时配有相应的例题及解答。 本书适合高等院校数学专业师生和数学爱好者参考阅读。
本书是一本介绍时滞微分方程稳定性理论的入门书,由6章和附录组成第1章是绪论,以简单的一维Logistic方程为出发点,结合丰富的计算机数值模拟,简要直观地概括了时滞对方程动力学性质的影响。第2章简要介绍传统的特征值方法在一些特殊的一维和二维线性自治方程零解稳定和振动性研究中的应用。第3章以简单独特的方式介绍Liapunov-Razumikhin方法的基本思想和在一些具体方程中的应用。第4章和第5章主要介绍时滞微分方程解的基础理论,主要包括解的存在唯一性,解的延拓和解对初始值的连续依赖性以及线性自治方程生成的解半群的分解等第6章详细介绍基于Liapunov泛函方法与Liapunov-Razumikhin方法建立的稳定性定理以及LaSalle不变性原理。为方便读者,本书在附录一和附录二中还介绍一些超越方程零点分布问题以及Dini导数的概念与性质。
这是一本教读者微积分轻松入门的读物,也是一本轻松简单适合自学的书。本书语言轻松幽默,通过大量贴切具体的图形图像尽可能生动地介绍微积分各个主题概念的由来,将中学数学与高等数学完美衔接,中间穿插数学史还原数学思想的产生思路,还有常用的高等数学符号趣谈加深读者学习印象,了解微积分发展的来龙去脉。作者总结多年微积分教学经验,用尽可能浅显易懂的语言,总结学习方法、归纳实用规律,指出常见错误和学生学习盲点,提供详细的解题技巧,中间还穿插一题多解拓宽视野,助力读者轻松快乐地从更高角度掌握微积分具体知识点,让读者对微积分有比较清楚的认知。特别地,本书对中国古代数学和古代数学思想多有介绍,让读者在轻松入门微积分的过程中也能体会到中国古代先哲对数学的贡献。
本书主要介绍了数学分析中的内容,以构造数系和集合论开篇,逐渐深入到级数、函数等高等数学内容,举例详实,每部分内容后的习题与正文内容密切相关,有利于读者掌握所学的内容。本书在附录部分还介绍了数理逻辑基础
本书从常识性的平凡道理出发, 不用极限概念也不用无穷小概念, 直截了当地定义了函数的导数, 证明了导数的常用性质; 定义了定积分, 推出了微积分基本定理. 严谨而不失直观的推理, 颠覆了微积分必须以极限概念为基础的传统观点. 全书共 18 章, 前 10 章用作者发现的新方法构建了一元微积分的逻辑框架; 后 8 章阐述新方法与传统体系的关系和接轨的方案, 以及一些重要的微积分知识. 本书化解了传统微积分教学的若干最大难点, 为建立高中和大学的微积分新体系描绘了蓝图.
求非线性问题的解析近似解最著名的方法是摄动法,已有数百年历史,但其有效性强烈依赖物理小参数,且不能保证摄动数的收敛,原则上仅适用于弱非线性问题。本书作者1992年提出的同伦分析方法,其有效性与是否存在物理小参数无关,能确保级数解收敛,克服了摄动法几乎所有的局限性,被国内外学者誉为该领域的一个重要里程碑。 本书分为上下两卷。上卷描述同伦分析方法的基本思想和相关理论;下卷给出基于同伦分析方法和数学软件Mathematica开发的软件包BVPh 1.0及其应用举例,以及求解非线性偏微分方程的一些典型例子。本书适合大学高年级本科生和研究生,以及应用数学、物理、力学、金融、工程等众多领域的科学家和研究人员阅读。
本书这是一套3卷集经典名著,版曾影印出版,广受好评。第2版新增内容312页(3卷),这是第3卷。本卷主要论述非线性偏微分方程。其中包括经典连续统力学方程和微分几何中的方程,以及非线性扩散问题。书中论及的分析方法包括索伯列夫空间理论、hˉlder空间理论、hardy空间理论和morrey空间理论。非线性分析用的泛函空间和算子理论;非线性椭圆方程;非线性抛物方程;非线性双曲方程;不可压缩流用的欧拉方程和navier-stokes方程;爱因斯坦方程。读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。 读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。
本书系统全面地介绍了微分学的相关理论,共包含11章内容,分别为基本公式、数、量、函数、极限、连续性、微分法、代数式的微分法则、导数的各种应用、逐次微分法及其应用、超越函数的微分法。 本书适合大学数学系师生及数学爱好者参考阅读。
本书力求对分数阶微分方程的差分方法作个简明介绍.全书分为6章.第1章介绍4种分数阶导数的定义,给出两类*简单的分数阶常微分方程初值问题解析解的表达式;介绍分数阶导数的几种数值逼近方法,研究它们的逼近精度,并应用于分数阶常微分方程的数值求解.这些是后面章节中分数阶偏微分方程数值解的基础.第2~6章依次论述求解时间分数阶慢扩散方程的有限差分方法、求解时间分数阶波方程的有限差分方法、求解空间分数阶偏微分方程的有限差分方法、求解一类时空分数阶微分方程的有限差分方法以及求解一类时间分布阶慢扩散方程的有限差分方法.对每一差分格式,分析其**可解性、稳定性和收敛性.
《偏微分方程.第2卷(第2版)》这是一套3卷集经典名著,版曾影印出版,广受好评。第2版新增内容312页(3卷),这是第2卷。本卷在第1卷的基础上进一步讨论线性偏微分方程中的一些高等问题,其中包括伪微分算子、自伴算子的泛函分析和wiener测度。书中还介绍了微分几何的基本概念、椭圆微分算子的谱理论、由障碍产生的波动散射理论、狄拉克算子用的指数理论、布朗运动和扩散等。 目次:伪微分算子;谱论;由障碍产生的散射;狄拉克算子和指数理论;布朗运动和位势论;-neumann问题;联络和曲率。 读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。
阿德里安·班纳著的《普林斯顿微积分读本》阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
本书共分三编:第一编为引言,主要介绍了Stieltjes与Stieltjes积分、Radon-Stieltjes积 分等;第二编为性质篇,主要介绍了Stieltjes积分和抽象积分的极限性质、Riemann-Stieltjes积分和积分中值定理等相关知识;第三编为应用篇,重点介绍了Stieltjes积分及其应用、用Lebesgue-Stieltjes积分定义的双曲型方程广义解等知识. 本书适合大学师生及数学爱好者阅读参考.
本书的内容为叙述近代复变函数论的方法对于力学的一个特殊问题(重刚体绕不动点运动问题)的应用,也就是微分方程的解析理论的方法对于动力学方程的积分法的应用。 本书大体分为四部分:第一部分介绍了理论力学的基本知识;第二部分介绍了重刚体绕不动点运动的各种情形以及在这些情形下的积分法;第三部分介绍了复变函数的基本知识;最后一部分给出了运动方程积分法的某些补充。 本书可供数学、力学、物理学等相关专业的人员参考使用。