欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
本书是作者结合多年的Python语言课程教学实践编写的。其内容包括:Python介绍、Python基础知识、Python程序设计、Python网络爬虫、Python高等数学、Python线性代数、Python概率统计、Python插值拟合与常微分方程求解及Python在数学建模中的应用共九章。书中配备了较多的实例,这些实例是学习Python与数学建模必须掌握的基本技能。 本书由浅入深、由易到难,既可作为在职教师学习Python的自学用书,也可作为数学建模培训班学生的培训。
《浙江省污染源自动监控系统运行与管理》共6章,系统介绍了污染源自动监控工作人员应知应会的基础知识要点,强调理论联系实际,有助于基本工作能力的提升。 《浙江省污染源自动监控系统运行与管理》以政策法规为带领,以标准规范为基础,从污染源自动监控系统的建设、运维、监管、应用等方面,对实际工作经验进行了总结凝练,结合诸多经典案例进行实例分析,实用性较强,将为今后污染源自动监控工作提供重要参考。
《数林外传系列:向量复数与质点》主要论述用向量解决常见几何问题的方法,是基于向量相加的首尾衔接规则的回路法。全书共7章,从被人忽视的向量回路人手,介绍向量形式的定比分点公式和四边形中位线公式及其应用,对垂直问题、圆问题、三角形五心问题等作了专题研究;同时探讨了与向量法密切相关的复数法和质点法;对于不同解法之间的优劣,列举大量实例进行比较研究。 《数林外传系列:向量复数与质点》是在《绕来绕去的向量法》基础上进一步研究的成果,可供中学和大学的数学教师及理工科教师、中学生和大学生、数学爱好者以及数学教育研究者参考。
《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》注重科学性、系统性和趣味性,全书共含34篇小文章,每篇文章各自独立成文,所以《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可系统性地研读,也可有选择性地阅读。《全国数学教师专著系列·数学解题与研究丛书:立体几何与组合》可作为高三复习备考用书,也可供中学、师生及初等数学爱好者研读,或作为数学竞赛辅导资料和师范数学教法方面的。
黄家礼编著的《几何明珠(第3版)》以著名的平面几何定理为素材,系统地介绍了这些定理的历史渊源及各种巧妙简捷的证明与解法,得出许多美妙有趣的引申和推广,并挖掘出这些定理在解题中的一些典型新颖的应用。全书内容丰富、通俗易懂、深入浅出、妙趣横生,对激发兴趣,锻炼机敏的思维能力将大有裨益。《几何明珠(第3版)》可作为大、中学生的课外读物,也可作为中学数学教师的教学参考资料。该书版于1997年由科学普及出版社出版,并获2001年湖北省论著一等奖;第二版于2000年由台湾九章出版社出版。
《俄罗斯数学精品译丛俄罗斯几何大师:沙雷金论数学及其他》收集了杰出教育家、数学家、科普工作者尹戈尔费多罗维奇沙雷金(1937-2004)的文章及他的同事、朋友和学生对他的回忆,并独立出一部分介绍从2005年开始举办的以沙雷金命名的几何奥林匹克竞赛的习题及讲解。《俄罗斯数学精品译丛俄罗斯几何大师:沙雷金论数学及其他》适合中学师生以及广大几何爱好者阅读。
《射影微分几何学》从李群和李代数、射影曲线、射影曲面、射影共轭网、射影联络空间、射影球丛几何、对称黎曼空间七个方面介绍了射影微分几何学的初步知识。《射影微分几何学》可供仪器仪表、电子、数控、机电、建筑设备、结构工程、计算机、金融和建筑物理等专业的科技人员使用。
《计算几何(第3版)》写的十分详细,适合初学者入门学习,老手也可丛中学到不少知识——Computationalgeometry,English,writteningreatdetail,suitableforbeginnersstudyentry,apairofveteransmayalsolearnalotofknowledge等。
本书基于修正狄拉克方程,全面描述了一维到三维拓扑绝缘体。书中公式推导简明易懂,给出了一系列边界附近束缚态解的推导,并描述了解的存在条件。引进了拓扑绝缘不变性及其在一些列系统中的应用,如一维聚乙炔到二维量子自旋霍尔效应、p波超导体、三维拓扑绝缘体、超导体和超流。这些都可以很好地帮助学习者更好的理解这个神奇的领域。读者对象:本书是一部拓扑绝缘体专业及相关领域研究生和科研人员的教材和参考用书。
内容简介:本书分上、下篇.上篇分为15章,介绍了22种平面几何证明方法,涵盖了求解平面几何问题常用方法和技巧.下篇介绍了13类问题的各种证明思路.本书在归纳、总结平面几何概念、定理、公式的基础上,更贴近数学完整的命题方向、命题内容,适合初、高中学生尤其是数学竞赛选手和初、高中数学教师及中学数学奥林匹克教练员使用,也可作为高等师范院校教育学院、教师进修学院数学专业及数学教育研讨班开设的“竞赛数学”或“初等数学研究”等课程的教学参考书.
本书分上、下篇、以66个专题的形式介绍了平面几何中很基本的图形性质、这些性质是作者在平面几何研究中以新的角度探索并呈现的,是求解有关几何难题的知识储备。
《现代数学基础丛书·典藏版69:集值分析》主要介绍了集值映射的连续性、连续选择与连续逼近,樊畿不等式与不动点定理,Ekeland变分原理,切锥与集值映射的导数,集值映射的可测性与积分,集值测度,模糊集值分析等,内容既包括集值分析的基础理论,也包括外学者及作者在这一领域的研究成果。《现代数学基础丛书·典藏版69:集值分析》读者对象为数学专业高年级学生、研究生、教师及有关专业科技工作者。