基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
现代物理学对数学的革命性影响最著名的例子,也许是弦论如何导致计数几何学的全面变革,这一数学领域始于19世纪。利用物理学启发的新颖而深刻的数学技术,现在已经解决了对几何构形进行计数的百年难题。 本书从深入介绍计数几何学开始,随后解释了计数代数几何学中更高级的主题。在此过程中,有一些关于中级主题的概览,如上同调和其他几何学论题,对于学习现代数学的学生来说是必bei备工具。 本书仅要求读者具备本科一年级水平的物理知识。书中重点着眼于解释物理学中的作用原理、弦论的思想,以及它们如何直接引出几何学问题。一旦这些主题准备就绪,便通过引入拓扑量子场论和量子上同调来建立物理学与计数几何学之间的联系。
德国数学家尤尔根?约斯特的著作Bernhard Riemann Ueber die Hypothesen,welche der Geometrie zu Grunde liegen, 以一个微分几何学家的独特视角, 将黎曼几何学思想置于更为宽广的背景??哲学、物理学以及几何学??加以考察, 并将黎曼的推理置于他的追随者基于他的开创性思想所获得的更普遍和更系统的视角进行研究. 作者遵循西方数学史家所主张的数学史研究方法论之“接受史”研究范式, 考察了从亚里士多德到牛顿的物理学中的空间观念、康德的空间哲学, 以及非欧几何学发展的历史, 同时还用现代数学的观点对黎曼关于几何学基础的假设文本中所涉及的现代数学概念予以阐释, 探究黎曼几何学与现代数学和理论物理的深刻联系.
内容简介:本书分上、下篇.上篇分为15章,介绍了22种平面几何证明方法,涵盖了求解平面几何问题常用方法和技巧.下篇介绍了13类问题的各种证明思路.本书在归纳、总结平面几何概念、定理、公式的基础上,更贴近数学完整的命题方向、命题内容,适合初、高中学生尤其是数学竞赛选手和初、高中数学教师及中学数学奥林匹克教练员使用,也可作为高等师范院校教育学院、教师进修学院数学专业及数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书.
内容简介:本书分上、下篇,以66个专题的形式介绍了平面几何中*基本的图形性质。这些性质是作者在平面几何研究中以新的角度探索并呈现的,是求解有关几何难题的知识储备。全书内容适合初、高中学生,尤其是数学竞赛选手和初、高中数学教师,以及数学奥林匹克教练员使用,也可作为高等师范院校数学教育专业以及教师进修数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书。
本书是XYZ Press已出版的两本几何书籍,即《106个几何问题:来自Awe-someMath夏季课程》和《107个几何问题:来自Awe-someMath全年课程》的非正式续篇。本书以这两本书的内容为背景,可作为几何学家以及备战高难度国际数学奥林匹克竞赛(IMO)的学生们使用的习题集。
本书简要介绍经典信息几何与矩阵信息几何的基本内容及其应用.全书共八章:第1章概述信息的发展历史;第2章简要介绍作为信息几何理论基础的微分几何的基本内容,没有涉及太多复杂的定义;第3章介绍经典信息的基本内容;第4章介绍矩阵信息几何,着重介绍相关的李群、李代数以及一般线性群的重要子群和子流形的性质,而且介绍各种流形上的自然梯度算法;第5~7章介绍经典信息几何的应用;第8章介绍矩阵信息几何的应用.
主要介绍点集拓扑和代数拓扑的基础知识。点集拓扑的内容包括度量空间、拓扑空间的基本概念,网收敛、分离性、可数性、度量化定理、紧性、连通性等;代数拓扑的内容包括基本群、覆盖空间、单纯复型与多面体、同调群等。另外还介绍了拓扑学中覆盖性质的近期成果。
这本小册子中研究的问题是只利用一把直尺或者再利用某个辅助图形作图,与此有关的是研究射影几何的一些基本概念。 这本小册子的读者对象是高年级中学生、教育学院和大学低年级学生以及数学教师。
本书从14个方面介绍了各类范例200余道一题多证(解)。主要是线段度量、角度度量、平行与垂直、相切、直线共点与点共直线、点共圆与圆共点、线段比例式及特殊图形的判定与特殊点的性质等方面的范例。本书中的每一道范例都呈现出了各种情形的证明和引人深思的技巧。 本书内容适合初、高中学生,尤其是数学竞赛选手和初、高中数学教师及奥林匹克教练员使用,也可作为高等师范院校数学教育专业及教师进修或培训班的数学教育方向开设的“竞赛数学”或“初等数学研究”等课程的数学参考书。
本书是美国著名数学竞赛专家 Titu andreescu教授及其团队精心编写的试题集系列中的一本 三角函数是构建 Fourier分析、微分方程等诸多数学分支的基础的关键要素,在导航、天文学、建筑学、地图学和数字成像等领域起着至关重要的作用,并且频繁出现在各种数学竞 赛、特别是数学奥林匹克竞赛的题目中.本书给出了关于三角函数的全面综述,介绍了它的基本定义和基本性质,深入研究了三角函数作为实值函数的性质,并且精心挑选了115个三角学的入门问题和高级问题,不仅给出了这些问题的详细解答,还概述了这些问题背后的核心思想 本书适合于热爱数学的广大教师和学生使用,也可供从事数学竞赛工作的相关人员参考
波拉索洛夫编著的《俄罗斯立体几何问题集》提 供了俄罗斯在中学,其中包括在专门化的学校学习的 几乎所有立体几何的问题及 各题的提示。 本书适用于大学、中学师生和数学奥林匹克选手 及教练员参考阅读。
基础拓扑学是数学的重要分支,内容丰富且应用面广.本书以点集拓扑学为基础,通过对一般拓扑学、测度论、拓扑向量空间、拓扑群及拓扑动力系统的一些专题进行论述,向读者简要介绍拓扑学中的一些基本知识、研究思想以及解决问题的方法,以较少的篇幅展现拓扑学中的一些主要内容.本书主要内容包括:集合与序集、可测映射与可测空间、拓扑空间、几类重要的拓扑性质、紧空间与度量空间、广义度量空间、拓扑向量空间简介、动力系统与拓扑群简介和不动点理论简介.目的是向读者简要介绍基础拓扑学中的一些基本内容、研究思路和解决问题的方法.
微分几何是20世纪*重要且*富生命力的数学分支,其历史可追溯到牛顿时代的微积分学,19世纪几何学变革中它获得了历史性进步,其中高斯作出了奠基性贡献。本书将高斯的内蕴微分几何学与其非欧几何学研究视为一个完整统一的思想体系,深入研究高斯的内蕴微分几何学思想与非欧几何学思想产生的历史背景与内在联系。主要内容有:高斯内蕴微分几何学的思想渊源;高斯的非欧几何学研究;高斯内蕴微分几何学的创立;高斯内蕴微分几何学的基本思想 《关于曲面的一般研究》之研究;高斯的几何学思想及其意义;高斯非欧几何学思想的实现途径;高斯-博内-陈定理的历史发展及其意义等。本书为18世纪末19世纪初几何学发展的历史研究提供了一个新的视角。 本书适合于数学专业大学生、研究生及有关教师阅读,特别是对近现代数学史(微分几何学)感兴趣的
本书对泛函分析的重要研究方向——Banach空间的凸性理论作了比较全面的总结,内容基本覆盖了近八十年凸性方面的主要研究成果,介绍了Banach空间的严格凸和一致凸的很多推广,也有很多关于范数可微和Banach空间的光滑性方面的结果.另外,对于光滑性很差的范数的性质,如粗范数,也作了较全面的介绍.
本书着眼于有向图, 将无向图作为特例,在一定的深度和广度上系统地阐述了图论的基本概念、理论和方法以及基本应用。全书内容共分7章,包括Euler回与Hamilton圈、树与图空间、平面图、网络流与连通度、匹配与独立集、染色理论、图与群,以及图在矩阵论、组合数学、组合优化、运筹学、线性规划、电子学以及通信和计算机科学等领域的应用。每章分为理论和应用两部分,并配有大量图形, 章末有小结和进一步阅读的建议。各章内容之间联系紧密,对许多 的定理给出了 简单的多种证明。每节末都有大量习题,书末附有参考文献、记号和名词索引。 本书既可用作高校数学、应用数学、运筹学、计算机科学、信息科学、管理科学等专业和相关研究所研究生和高年级本科生的选修课教材,也可用作高校和研究所图论及相关专业的教师和研究人员的参考书。
《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》是从常庚哲命的一道CMO试题的积分解法谈起,进而介绍了面积原理问题.《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》共有9章:第1章引言,第2章历史与经典结果,第3章近代理论介绍——关于高维求积公式的某些简单定理,第4章二次及三次的高维求积公式,第5章构造数值积分公式的算子方法,第6章高维积分的“降维法”与二维求积公式的一种构造法,第7章高维矩形区域上的数值积分与误差估计,第8章多元周期函数的数值积分与误差估计,第9章高维数值积分公式的误差界限决定法。 《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》适合大、中学师生及数学爱好者阅读及收藏。
本书旨在让读者了解最简单的初等几何工具,由于它们是初等的,并且经常能得到简洁的证明,故而频繁地被用于数学奥林匹克竞赛中。本书共分为两部分,第1部分介绍了常用的定理和工具,每章结尾都有一些练习题,它们可以利用正文提供的工具进行解答;第2部分是第1部分中的练习题的解答,所给出的解答既不是唯一的,也不是最简单的,它们反映了作者考虑构形的方式,并应用了特定的工具作答。 本书可供几何爱好者以及备战数学奥林匹克竞赛的学生们使用。
本书力图呈现一些证明三维空间中数学的成果及技巧,尽可能提升读者形象化思考能力的技巧,在结果与方法上采用立体几何的一些传统名称,即棱柱、棱锥、帕拉图体(正多面体)、圆柱、圆锥和球。本书共10章,分别用一章的篇幅叙述以下方面的内容:计数、表示法、切割法、截面、交、迭代以及折叠和展开等,同时每一章还给出一组挑战题供读者进一步探索各种性质以及每一种方法的应用,在各章结束后,作者还给出了书中挑战题的提示和解答。
《几何基础》是数学大师希尔伯特的一部名著,首次发表于1899年,该书第一次给出了完备的欧几里得几何公理系统。全体公理按性质分为五组(即关联公理、次序公理、合同公理、平行公理和连续公理),他对它们之间的逻辑关系作了深刻的考察,精确地提出了公理系统的相容性、独立性与完备性要求。为解决独立性问题,他的典型方法是构作一个模型,不满足所论的公理,但却满足所有其他公理。采用这种途径可赋予非欧几何以严密的逻辑解释,同时开拓了建立其他新几何学的可能性。对于相容性问题,他的重大贡献是借助于解析几何而将欧氏几何的相容性归结为初等算术的相容性。上述工作的意义远超出了几何基础的范围,而使他成为现代公理化方法的奠基人。