全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
《数学与人文》丛书第三十四辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分4个栏目,包含了11篇文章。 专稿 栏目收录了丘成桐先生的 几何三讲:从古代到黎曼 。 中外数学大师的经历 栏目刊载了王作跃和郭金海的文章 陈省身、华罗庚和普林斯顿高等研究院 以及另一篇纪念、回忆文章 纪念John Tate 。 国际数学家的友好交往 栏目收录了丘成桐先生纪念John Coates教授的文章以及Coates教授的生平介绍、其儿子写的悼念文章和梁志斌博士对他的采访;栏目还登载了丘成桐先生的 祝贺Karen Uhlenbeck八十华诞 , 同时收录了Uhlenbeck教授的小传;栏目的最后一篇是悼念挪威数学家Selberg的文章。 数学家趣味 栏目收录了澳门大学数学系金小庆教授的文章 书法记 。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对
代数拓扑 同伦理论描述了同伦理论。它得以兴旺发展,应归功于W. Hurewicz1935年引进同伦群以及S. Eilenberg用同伦群引进关于映射扩张的障碍类。同伦理论包括同伦群 n(X),相对同伦群、上同伦群、谱序列以及障碍理论。我们还详细讨论了第1同伦群(也称为基本群) 1(X),它在同伦群中性质知道*多,与它有关的研究成果也*多。我们将展示近代微分几何中曲率与基本群相关的一些成果。同调群与同伦群都是拓扑不变量,也都是同伦不变量。他们是比点集拓扑中得拓扑不变量(如连通性、紧致性)更难、更复杂、更高档次的不变量。我们将给出用连通性、紧致性不能判断不同胚、不同伦,而用同调群或者同伦群却能判断不同胚、不同伦的种种具体实例。*后,还给出了球面 Sn的弱冠同伦群的结果。
本书根据作者近年来多次在南开大学讲授黎曼几何的讲稿写成,可以作为黎曼几何的入门教材,主要介绍黎曼几何的基本概念与基本方法。全书共十四讲,依次介绍黎曼流形、黎曼联络、测地线、曲率等基本概念;其间介绍弧长的变分公式以及Jacobi场等基本方法,并讨论黎曼流形上的几何变换、微分算子、完备性、比较定理等;最后,作为黎曼流形的重要实例,介绍了齐性黎曼流形。每一讲都配有适量的例子和重要的应用,以及少量习题,以加深对相关概念和方法的理解。本书强调几何背景,着重介绍几何直观比较明确的一些定理,定理的证明也以经典微分几何方法为主。
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
本书为 六宫变型数独 系列的*本,系统地介绍了六宫对角线的解法。在六宫对角线的解法中,*次以出版的形式,清晰定义了共同影响的解题思路。本书选择常见的题型,通过典型的例题,详细讲解每一步的思考方法,手把手教读者如何一步步分析解决各类题目。《BR》 本书150道练习题,按照由浅入深、由易至难的顺序编写。有些题目难度甚至比一般的比赛题目更难一些。无论这些题目难易程度如何,都是可以用逻辑推导出来的。
本书分为三角函数测角法,三角函数表,三角形的解法以及习题四部分。详细地介绍了平面三角的相关知识。本书适合平面几何爱好者及在中学师生阅读参考。
本书是“十三五” 国家重点出版物出版规划项目———现代机械工程系列精品教材,是根据*制订的“普通高等院校工程图学课程教学基本要求”,并征求多所高校具有丰富教学经验的工程图学教师的意见和建议,在总结作者近年来的教学改革实践经验的基础上修订完成的 本书的内容符合本课程教学大纲的基本要求 本次修订删除了本科学习阶段不常用的曲线 曲面内容;在第五章投影变换里增加了绕投影面平行轴的旋转以及旋转法综合问题实例,以拓展学生的解题思路 本书内容包括投影的基本知识 点和直线 平面 直线与平面以及两平面的相对位置 投影变换 立体 立体表面的交线 组合体 轴测投影和表面展开,总共十章 本书可作为高等院校本科机械类各专业使用的教材,也可供其他各类学校有关师生和广大工程技术人员参考
本书共分十三章,重点讲解投影的基本知识、点线面的投影、立体的投影、轴测投影、组合形体、标高投影、立体表面展开等内容。通过实例,图文结合、循序渐进地介绍了画法几何学的基本知识、读图思路。可作为土木工程、道桥工程、城市地下空间工程、安全、力学、测绘、环境工程、暖通、给排水、建筑学、园林、规划、环境设计、工程管理、造价、土地、房地产、城市、物业、机械、交通、物流、电气、自动化、智能、通信、信息等专业本科、专科学生的教学用书,也可供相关工程技术人员参考。 与本书配套使用的《画法几何学习题及解答》(周佳新主编)由化学工业出版社同时出版。 教材和习题及解答均有配套的PPT版课件。
本书是作者结合多年的Python语言课程教学实践编写的。其内容包括:Python介绍、Python基础知识、Python程序设计、Python网络爬虫、Python高等数学、Python线性代数、Python概率统计、Python插值拟合与常微分方程求解及Python在数学建模中的应用共九章。书中配备了较多的实例,这些实例是学习Python与数学建模必须掌握的基本技能。 本书由浅入深、由易到难,既可作为在职教师学习Python的自学用书,也可作为数学建模培训班学生的培训。
《平面解析几何方法与研究(第3卷)》全面系统地介绍了欧氏平面解析几何的有关重要内容,是作者参考了多种有关论著并结合自己的教学经验整理而成的,《平面解析几何方法与研究(第3卷)》对进一步理解平面解析几何基本内容、拓宽知识面都有很大帮助,对于书中的难点和一般解析几何书中不常见到的内容作者都做了严谨而详细地论述,并配备了较多例题,每个例题都具有典型意义,是对正文的重要补充,这些例题对理解重要概念、掌握解析几何方法有重要作用,因此,《平面解析几何方法与研究(第3卷)》是一本有价值的数学教学参考书。
各种突如其来的危险具有难以预测和不可扭转的本性,种种情况都需要及时实施救治。面对灾难,很多人因为缺乏自救和急救知识而惊慌失措,错过了的抢救时间,导致悲剧的发生。我们要有足够的能力来保护自己和实施救助,正确的处理和对待将起到非常重要的作用。想要有效地对伤者或病者实施救治,这需要我们掌握科学的自救与急救知识,及时准确地采取救助措施,帮助伤者缓解疼痛,防止更严重的情况发生,避免后遗症。 人们遇到的危险并不仅来自于各种无法预料的突发灾害,还有来自于他人的冒犯和侵害。居家生活、工作、行车、户外旅行等不同情境下,遭到歹徒袭击、遇到色狼骚扰、被尾随等危险情况也时有发生。作为一个现代人,清醒地认识到自己身边存在的危险,包括现代社会生活中的各种危险和自然灾害,掌握自我防卫的技能,增强自身
本书是点集拓扑学方面的一本经典著作,全书共十章,内容为:拓扑空间、积空间、仿紧空间、紧空间、一致空间、复形和扩张子、逆极限和展开定理、Arhangelskii空间、商空间和映射空间、可数可乘的空间族.正文前的绪论简要地叙述了阅读本书所需的集合论的基本知识.书中有大量的例题和习题,有益于加强基本训练。
本书是本人2013年编写的《拓扑学》(机械工业出版社)教材的配套读物,给出了书中500多道习题的详细解答。具体内容有下面这些方面的习题:拓扑空间的基本概念,连续映射,拓扑基与积空间,分离性公理与可数性
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书
本书是本人2013年编写的《拓扑学》(机械工业出版社)教材的配套读物,给出了书中500多道习题的详细解答。具体内容有下面这些方面的习题:拓扑空间的基本概念,连续映射,拓扑基与积空间,分离性公理与可数性
刘培杰数学工作室编著的《面积原理——从常庚哲命的一道CMO试题的积分解法谈起》是从常庚哲命的一道CMO试题的积分解法谈起,进而介绍了面积原理问题。本书共有9章:第1章引言,第2章历史与经典结果,第3章