许多人时常会感叹于一些数学题解法的简练和精妙,并感到困惑:这样巧妙的解法我怎么想不到?本书将完整地展现求解几何题的思考过程,特别是从错误到正确的求索过程。全书分为两篇,上篇以 17 道几何题为例,从学生的角度去探索和求解;下篇则分 7 讲完整地讲解平面几何的典型问题,从教师角度启发和引导学生思考。书中不以题目的数量和知识点的覆盖面取胜,重在讲解思维与方法。这些思维与方法不是平面几何所特有的,而是理工科解决未知问题的共性范式。学生通过阅读本书可以掌握几何题背后的思考逻辑,从容解出平面几何题,将来面对未知问题也不再畏惧。本书适合已经学完平面几何基础知识,希望搞定中考几何压轴题及数学竞赛几何题的学生阅读。
基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
现代物理学对数学的革命性影响最著名的例子,也许是弦论如何导致计数几何学的全面变革,这一数学领域始于19世纪。利用物理学启发的新颖而深刻的数学技术,现在已经解决了对几何构形进行计数的百年难题。 本书从深入介绍计数几何学开始,随后解释了计数代数几何学中更高级的主题。在此过程中,有一些关于中级主题的概览,如上同调和其他几何学论题,对于学习现代数学的学生来说是必bei备工具。 本书仅要求读者具备本科一年级水平的物理知识。书中重点着眼于解释物理学中的作用原理、弦论的思想,以及它们如何直接引出几何学问题。一旦这些主题准备就绪,便通过引入拓扑量子场论和量子上同调来建立物理学与计数几何学之间的联系。
德国数学家尤尔根?约斯特的著作Bernhard Riemann Ueber die Hypothesen,welche der Geometrie zu Grunde liegen, 以一个微分几何学家的独特视角, 将黎曼几何学思想置于更为宽广的背景??哲学、物理学以及几何学??加以考察, 并将黎曼的推理置于他的追随者基于他的开创性思想所获得的更普遍和更系统的视角进行研究. 作者遵循西方数学史家所主张的数学史研究方法论之“接受史”研究范式, 考察了从亚里士多德到牛顿的物理学中的空间观念、康德的空间哲学, 以及非欧几何学发展的历史, 同时还用现代数学的观点对黎曼关于几何学基础的假设文本中所涉及的现代数学概念予以阐释, 探究黎曼几何学与现代数学和理论物理的深刻联系.
欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
内容简介:本书分上、下篇.上篇分为15章,介绍了22种平面几何证明方法,涵盖了求解平面几何问题常用方法和技巧.下篇介绍了13类问题的各种证明思路.本书在归纳、总结平面几何概念、定理、公式的基础上,更贴近数学完整的命题方向、命题内容,适合初、高中学生尤其是数学竞赛选手和初、高中数学教师及中学数学奥林匹克教练员使用,也可作为高等师范院校教育学院、教师进修学院数学专业及数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书.
内容简介:本书分上、下篇,以66个专题的形式介绍了平面几何中*基本的图形性质。这些性质是作者在平面几何研究中以新的角度探索并呈现的,是求解有关几何难题的知识储备。全书内容适合初、高中学生,尤其是数学竞赛选手和初、高中数学教师,以及数学奥林匹克教练员使用,也可作为高等师范院校数学教育专业以及教师进修数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书。
本书是XYZ Press已出版的两本几何书籍,即《106个几何问题:来自Awe-someMath夏季课程》和《107个几何问题:来自Awe-someMath全年课程》的非正式续篇。本书以这两本书的内容为背景,可作为几何学家以及备战高难度国际数学奥林匹克竞赛(IMO)的学生们使用的习题集。
本书简要介绍经典信息几何与矩阵信息几何的基本内容及其应用.全书共八章:第1章概述信息的发展历史;第2章简要介绍作为信息几何理论基础的微分几何的基本内容,没有涉及太多复杂的定义;第3章介绍经典信息的基本内容;第4章介绍矩阵信息几何,着重介绍相关的李群、李代数以及一般线性群的重要子群和子流形的性质,而且介绍各种流形上的自然梯度算法;第5~7章介绍经典信息几何的应用;第8章介绍矩阵信息几何的应用.
本书是美国著名数学竞赛专家 Titu andreescu教授及其团队精心编写的试题集系列中的一本 三角函数是构建 Fourier分析、微分方程等诸多数学分支的基础的关键要素,在导航、天文学、建筑学、地图学和数字成像等领域起着至关重要的作用,并且频繁出现在各种数学竞 赛、特别是数学奥林匹克竞赛的题目中.本书给出了关于三角函数的全面综述,介绍了它的基本定义和基本性质,深入研究了三角函数作为实值函数的性质,并且精心挑选了115个三角学的入门问题和高级问题,不仅给出了这些问题的详细解答,还概述了这些问题背后的核心思想 本书适合于热爱数学的广大教师和学生使用,也可供从事数学竞赛工作的相关人员参考
波拉索洛夫编著的《俄罗斯立体几何问题集》提 供了俄罗斯在中学,其中包括在专门化的学校学习的 几乎所有立体几何的问题及 各题的提示。 本书适用于大学、中学师生和数学奥林匹克选手 及教练员参考阅读。
基础拓扑学是数学的重要分支,内容丰富且应用面广.本书以点集拓扑学为基础,通过对一般拓扑学、测度论、拓扑向量空间、拓扑群及拓扑动力系统的一些专题进行论述,向读者简要介绍拓扑学中的一些基本知识、研究思想以及解决问题的方法,以较少的篇幅展现拓扑学中的一些主要内容.本书主要内容包括:集合与序集、可测映射与可测空间、拓扑空间、几类重要的拓扑性质、紧空间与度量空间、广义度量空间、拓扑向量空间简介、动力系统与拓扑群简介和不动点理论简介.目的是向读者简要介绍基础拓扑学中的一些基本内容、研究思路和解决问题的方法.
微分几何是20世纪*重要且*富生命力的数学分支,其历史可追溯到牛顿时代的微积分学,19世纪几何学变革中它获得了历史性进步,其中高斯作出了奠基性贡献。本书将高斯的内蕴微分几何学与其非欧几何学研究视为一个完整统一的思想体系,深入研究高斯的内蕴微分几何学思想与非欧几何学思想产生的历史背景与内在联系。主要内容有:高斯内蕴微分几何学的思想渊源;高斯的非欧几何学研究;高斯内蕴微分几何学的创立;高斯内蕴微分几何学的基本思想 《关于曲面的一般研究》之研究;高斯的几何学思想及其意义;高斯非欧几何学思想的实现途径;高斯-博内-陈定理的历史发展及其意义等。本书为18世纪末19世纪初几何学发展的历史研究提供了一个新的视角。 本书适合于数学专业大学生、研究生及有关教师阅读,特别是对近现代数学史(微分几何学)感兴趣的
本书对泛函分析的重要研究方向——Banach空间的凸性理论作了比较全面的总结,内容基本覆盖了近八十年凸性方面的主要研究成果,介绍了Banach空间的严格凸和一致凸的很多推广,也有很多关于范数可微和Banach空间的光滑性方面的结果.另外,对于光滑性很差的范数的性质,如粗范数,也作了较全面的介绍.
《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》是从常庚哲命的一道CMO试题的积分解法谈起,进而介绍了面积原理问题.《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》共有9章:第1章引言,第2章历史与经典结果,第3章近代理论介绍——关于高维求积公式的某些简单定理,第4章二次及三次的高维求积公式,第5章构造数值积分公式的算子方法,第6章高维积分的“降维法”与二维求积公式的一种构造法,第7章高维矩形区域上的数值积分与误差估计,第8章多元周期函数的数值积分与误差估计,第9章高维数值积分公式的误差界限决定法。 《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》适合大、中学师生及数学爱好者阅读及收藏。
本书主要介绍点集拓扑学的基本知识。全书分为十七讲,包括预备知识,拓扑空间的基本概念,拓扑空间之间的连续映射,拓扑基与邻域基,Tychonoff积空间,分离性公理,Urysohn引理与完全正则空间,点网与滤子,拓扑空间的紧致性,列紧性、可数紧性与伪紧性,局部紧性与Baire空间,仿紧性,连通性与道路连通性,度量空间的完备性与完备化,商空间与商映射,函数空间,同伦映射与空间的同伦等价。每讲内容介绍都比较深入,并配备大量的例题和习题。
本书是本人2013年编写的《拓扑学》(机械工业出版社)教材的配套读物,给出了书中500多道习题的详细解答。具体内容有下面这些方面的习题:拓扑空间的基本概念,连续映射,拓扑基与积空间,分离性公理与可数性公理,引理及其应用,紧致性与列紧性,局部紧性与仿紧性,连通性,道路连通性,商映射与商空间,几个典型曲面与闭曲面分类定理,点网与滤子,函数空间,映射的同伦与基本群的定义,球面的基本群,基本群的同伦不变性,基本群的计算,同伦提升定理与映射提升定理,复叠空间及其基本性质,复叠变换与正则复叠空间,单纯复形的同调群,同调群的性质,同调群的基本计算,单纯映射与单纯逼近,重心重分与单纯逼近存在定理,连续映射诱导的同调群同态,同调群的同伦不变性,同调序列,球面自映射的映射度,保径映射的映射度及其应用,Lef
欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。