《测度与概率教程》讲述现代概率论与数理统计所需要的基本测度论知识,包括测度的构造、积分、乘积测度、赋号测度、Lp空间、条件与独立及Polish空间上的测度等.
本书共分15章,内容包括数学建模概论,初等模型,微分方程模型,种群生态学模型,线性规划模型,非线性规划模型,层次分析模型,模型,动态规划模型,图论模型,最短路模型,网络流模型,数学建模竞赛案例选讲,MATLAB软件使用简介等。
《实分析中的反例》汇集了实分析中的大量反例,主要内容有集合、函数、微分、Riemann积分、无穷级数、一致收敛、Lebesgue测度和Lebesgue积分、有界变差函数和连续函数。对平面点集、二元函数和二重积分方面的反例也做了介绍。 《实分析中的反例》可供高等学校数学类各专业的本科生、研究生以及教师参考。