《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
《好看的数学故事:概率与统计卷》以讲故事的方式介绍概率统计的概念和理论发展的历史。 从流传数千年的投币和骰子游戏到古老的八卦,从古印度《吠陀经》的韵律到希伯来字母排列的神秘咒语,古人们逐渐发现了排列与组合的基本规律。当阿拉伯的骰子游戏传入经过文艺复兴的欧洲,概率的概念开始明晰起来。 起初的概率,多半应用在赌博游戏上,不仅是投币和骰子,还有纸牌、赛马等等。这些东西在学术领域似乎不值一提,但古典概率理论一旦出现,立即在社会各个领域发现重要的应用价值。统计学随之而生。 通过字母分析破译密码,通过死亡记录探究传染病的危害,新生婴儿的性别比例,居民寿命的期望值和保险年金,统计学在人类社会从古典社结构进入现代结构的发展过程中发挥了极其重要的作用。天文学、实验物理学和数学的发展推动了概率统计
庄楚强、何春雄编*的《应用数理统计基础(第4 版)》介绍经典的数理统计理论与方法,内容包括初等概率论知识的复习、抽样分布、参数估计、假设检验、方差分析和试验设计,还简要介绍数据挖掘及统计学习、R软件等较为现代的统计方法和工具。书中有较多例题并附有例题求解的R软件参考程序,各章配有习题,书末附有习题答案。 《应用数理统计基础(第4版)》适用于了解概率论基础知识和具有使用计算机软件基本经验的读者阅读。可作为高等院校非数学专业硕士研究生数理统计课程的参考教材,也可供在自然科学、管理科学、社会科学、经济与金融科学等诸多研究领域中用到统计科学的科研工作者参考。
本书是结合作者多年的教学经验,根据理工科“数学物理方程”教学大纲的要求及大气科学等专业的需要而编写的。本书以方法为主线,内容包括典型模型的定解问题建立、方程的分类与标准型、行波法、分离变量法、积分变换法和格林函数法等。在此基础上,介绍了研究偏微分方程定性理论的极值原理和能量方法,探讨了贝塞尔函数及勒让德函数的应用。本书叙述注重启发性、系统性与应用性,把较难的概念与尽量浅显的例子适当结合,将方法运用于各种应用驱动的偏微分方程模型中,并补充和扩展了相关知识到交叉应用领域。书中配有较多的典型例题和习题,可供读者阅读与练习。
《科学就在你身边·在无形中寻找力量:电与磁的世界》主要从电磁的基本知识,电与磁的相互关系,电磁辐射的危害与防护,电磁知识在医学以及军事、生活的应用几个方面来阐明电磁的道理。
由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
《博学·经济学系列:统计学原理(第7版)》共分八章,即绪论、统计调查与整理、综合指标、动态数列、统计指数、抽样调查、相关与回归分析、国民经济核算。这次修订,主要对各章的练习题作了调整和增补,改写了第五章、第六章、第七章、第八章,同时对书中的统计资料作了更新。前六版受到读者的广泛好评。 《博学·经济学系列:统计学原理(第7版)》的特点是实用、简明,每章后有练习题并附有习题解答。 《博学·经济学系列:统计学原理(第7版)》适合各大专院校经济、管理、金融等专业师生。
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书.
非帕斯卡概率逻辑是美国逻辑学家乔纳森 柯恩 创立的、有别于帕斯卡概率逻辑的一种新型逻辑,该 逻辑系统的*大的特征是不满足帕斯卡公理系统的否 定互补性原理和乘法法则。沈振东*的《非帕斯卡概 率逻辑的哲学基础与应用研究》立足于三个研究视角 :一是在传统的归纳逻辑理论的演化序列中探寻该逻 辑系统的哲学基础的合理性;二是从可能世界语义学 角度对该种逻辑进行形式刻画,并建立逻辑系统;三 是该逻辑系统以相关变量等概念为工具尝试性地对帕 斯卡概率不解释的领域进行解释,或者对应用帕斯卡 概率而导致悖论性的结论进行消解。
本书是结合作者多年的教学经验,根据理工科“数学物理方程”教学大纲的要求及大气科学等专业的需要而编写的。本书以方法为主线,内容包括典型模型的定解问题建立、方程的分类与标准型、行波法、分离变量法、积分变换法和格林函数法等。在此基础上,介绍了研究偏微分方程定性理论的极值原理和能量方法,探讨了贝塞尔函数及勒让德函数的应用。本书叙述注重启发性、系统性与应用性,把较难的概念与尽量浅显的例子适当结合,将方法运用于各种应用驱动的偏微分方程模型中,并补充和扩展了相关知识到交叉应用领域。书中配有较多的典型例题和习题,可供读者阅读与练习。
本书追溯了统计学如何误入歧途的历史(300多年),从十七世纪数学家雅各布?伯努利的开创性工作开始,一直到赌博、天文学和遗传学中对统计学的运用。作者讲述了互相竞争的统计学派之间的争斗,探讨了催生该学科的令人惊讶的人类问题(种族主义)以及使其脱轨的所有人类缺点。例如,十九世纪和二十世纪里有影响力的人发展出一种他们声称是纯粹客观的统计方法,以压制对其政治议程(包括优生学)的批评。作者对概率的数学和逻辑进行了清晰的阐述,深入浅出地将较为复杂的概念介绍给对统计方法感兴趣的读者,这些统计方法实质上构成了我们对世界的理解。他认为,我们需要采取贝叶斯方法——即在用不 信息进行推断时纳入先验知识,以解决危机。本书的内容横跨数学、哲学和文化,解释了为什么我们使用数据的方式出了问题,以及如何解决这个问
本书应用迦罗瓦理论清晰透彻地论述了两个古典难题的解决方法,即寻找代数方程的求根公式和限用圆规直尺作图(如三等分任意角、把立方体体积加倍、化圆为正方形,以及作正多边形等),并借此由浅入深地向读者介绍了一些抽象代数的基本知识和研究方法。
《统计思维:程序员数学之概率统计》是一本以全新视角讲解概率统计的入门图书。抛开经典的数学分析,Downey手把手教你用编程理解统计学。概率、分布、假设检验、贝叶斯估计、相关性等,每个主题都充满趣味性,经编程解释后变得更为清晰易懂。 《统计思维:程序员数学之概率统计》研究数据主要来源于美国全国家庭成长调查(NSFG)与行为风险因素监测系统(BRFSS),数据源及解决方案的相关代码全部开放,具体章节列出了大量学习和进阶资料,方便读者参考。 《统计思维:程序员数学之概率统计》面向广大程序员和计算机专业的学生。
《妙用正弦学数学》的学习路径是先学计算后讲推理。计算一通,推理自通。“九章算术”的长处在于计算,它的精髓是寓理于算。“几何原本”的长处在于推理,它的精髓是公理化思想。采用这一学习路径,我们可以将两大世界数学名著的精华融为一体。
本书与同济大学数学系编写的《线性代数》(第六版)教材相配套,对每个章节的知识点进行了总结和归纳,便于读者系统掌握相关只是,并在各章节知识点之后配备了相应的习题,很后提供了两套模拟试卷供学生自测。
《微积分简明教程》是同济大学数学科学学院承担高等数学课程的骨干教师,在借鉴了同济大学相关教材的基础上编写而成的,内容包括一元及多元函数微积分理论和应用。全书通过探讨数学思想的本质阐述数学理论,避免过多的数学公式和繁琐的计算技巧,注重数学理论与实际生活的联系;并通过巧妙地使用数学史、科学家文献中的原始论述等,使历史背景与理论知识无缝对接,延伸了知识点的内涵。 《微积分简明教程》直观易懂、深入浅出,符合文科学生的学习特点,可供高等院校文科专业的学生使用,也可供相关人员参考。