本书根据作者多年的教学改革实践修订而成,内容包括*事件与概率、离散型*变量及其分布、连续型*变量及其分布、*变量的数学特征、*变量序列的极限、现代概率论基础简介、数理统计的基本概念、参数估计、假设检验、回归分析与方差分析。书中各章附有相当数量的习题,书末附有习题的参考答案,供读者查阅。本书在*制定的教学大纲的基础上,紧扣硕士研究生入学考试大纲,并以此规范概率统计中的术语与记号。
本书是数理统计入门级的教材,作为基础课的教材,本次修订我们修改了版中的不当之处,删去了U统计量、线性估计、构造置信限等内容,选择点估计、区间估计、参数检验和分布检验4个基本的统计问题作为本书主要内容,中间插入贝叶斯统计的一些观念和方法。全书5章内容,把统计量和抽样分布等基本概念归入第1章,为年轻读者进入统计学的研究和应用打下扎实的基础
由美国当代著名统计学家L.沃塞曼所著的《统计学完伞教程》是一本几乎包含了统计学领域全部知识的优秀教材,本书除了介绍传统数理统计学的全部内容以外,还包含了Bootstrap方法(白助法)、独立性推断、因果推断、图模型、非参数同归、正交函数光滑法、分类、统计学理论及数据挖掘等统计学领域的新方法和技术.本书不但注重概率论与数理统计基本理论的阐述,同时还强调数据分析能力的培养.本书中含有大量的实例以帮助广大读者快速掌握使用R软件进行统计数据分析。
本书是剑桥大学统计实验室的戴维 威廉姆斯教授在为剑桥大学三年级大学生所开设课程的讲义的基础上写成的 , 是一本基于测度论的方法来介绍概率论的严格理论的入门书。 该书的*特点与新颖之处是用了近三分之一的篇幅来介绍先进的鞅的理论与方法(这一点连作者本人也颇为自许); 此外,还有如从第 4 章 独立性 开始便引入 - 代数化的表达方式 , 将 - 代数视为总结、综述信息的一种自然的工具 , 这对于后面条件期望概念的一般化与鞅的理论的叙述都是至关重要的。 再如将某些定理的叙述、阐释与定理的证明分开进行(将定理的证明放在附录中) , 这样更便于读者自学。作者学养深厚、涉猎广博、文笔生动 , 书中内容涉及概率论的众多分支领域 , 信息量巨大 , 且不乏一些有趣并富于启发性的例子 , 相信读者阅后定能获益良多。
20世纪以来,概率论逐渐渗入到自然科学、社会科学以及人们的日常生活中。无论是在研究领域,还是在教育领域,它愈来愈成为重要的学科之一。在概率论发展历史上,18、19世纪之交法国科学家拉普拉斯具有特殊的地位。 拉普拉斯在他的纯粹与应用数学的众多严格的学术著作之外,还出版了为普通读者写的两篇通俗文章,《关于概率的哲学随笔(双语版)》就是其中的一篇,它构成了《拉普拉斯全集》第7卷中的巨著《概率的分析理论》的引言。 《关于概率的哲学随笔(双语版)》的意图就是让读者不借助较深的数学知识就能了解概率的原理,作者本质上将数学对象以非数学的面貌呈现,用大众化的语言详细论述当时概率论的原理和一般结论。 拉普拉斯概率理论在19世纪的概率论发展史上占据了中心和统治地位,对19世纪的概率论的发展产生了
我们是不是比父母更聪明?开车时打电话与酒驾一样危险吗?坐飞机和开车,哪种方式更安全?钻石越重,价格就越高吗?小学四年级的学生可以用统计学做什么? 如果你想知道这些问题的答案,就来阅读本书吧。 大数据时代,统计学是读懂、听懂和看懂事情真相的基础,数据挖掘与统计分析已成为现代人必不可少的技能。《妙趣横生的统计学 培养大数据时代的统计思维(第四版)》是一本美国流行的统计学应用入门书。它通过生活中有趣的案例、直观的图表阐述了各种统计概念与统计技术的应用,没有枯燥乏味的理论知识、生涩难懂的理论证明,只有日常生活所需要的统计思想、正确分析数据的基本路径,真正做到了通俗易懂、深入浅出。 如果你想更好地理解如经济学、心理学等课程中将会用到的统计学知识,如果你正在寻找提高统计分析能力的方
本书以数据的常用统计分析方法为基础,在简明扼要地阐述统计学基本概念、基本思想与基本方法的基础上,讲述与之相对应的R 函数的实现,并通过具体的例子说明统计问题求解的过程。 本书注重思想性、实用性和可操作性;在内容的安排上不仅包含了基础统计分析中的探索性数据分析、参数的估计与假设检验,还包含非参数统计分析的常用方法、多元统计分析方法; 此外还安排了在R 新生态下数据治理与可视化的拓展性内容。每一部分都通过具体例子重点讲述解决问题的思想、方法和在R 中的实现过程。阅读本书,读者不仅可以快速学会R 的基本原理与核心内容,还可以根据提供的例子与相应的R 程序学会解决问题的统计计算方法与基本的编程技术,为解决更复杂的统计问题奠定扎实的基础。 本书可作为各专业本科生、研究生数理统计或应用统计课程的基础教
本书是一部经典的*过程著作,叙述深入浅出、涉及面广。主要内容有*变量、条件期望、马尔可夫链、指数分布、泊松过程、平稳过程、更新理论及排队论等,也包括了*过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。特别是有关*模拟的内容,给*系统运行的模拟计算提供了有力的工具。zui新版还增加了不带左跳的*徘徊和生灭排队模型等内容。本书约有700 道习题,其中带星号的习题还提供了解答。本书可作为计算机科学、保险学、社会科学、生命科学、管理科学与工程等专业*过程基础课教材。
本书阐述有不等式约束的参数估计和假设检验的方法和理论,及其在小一乘估计和随机序检验等方面的应用。本书把数学规划的方法和思想用到数理统计中,使得可解决的统计问题的范围进一步扩大。
本书是国内全面讨论概率论发展与先进数学技术的学术专著,较全面、翔实地概述了概率论的发展历史。从初的博弈分析问题到现今方法论综合性学科,全书勾勒出概率论兴起、发展和壮大的清晰脉络,并简要介绍了当前概率论学科的主要研究方向和发展动态。本书也试图从概率论教学角度诠释概率思想,以期让更多的读者从中受益。
自Shewhart博士在20世纪20年代提出第一个控制图后,现在关于控制图的研究结果已十分丰富,且取得了良好的社会和经济效益。特别是,近年来出现的多个新的研究方向也取得了一些很好的研究成果,但系统介绍这些成果的著作并不多,而本书将作这方面的努力与尝试,其中有部分成果来自作者所在的课题组,特别是关于监测profile的研究内容。本书主要讲述近年来关于统计过程控制图的一些基本理论与方法,如阶段I控制图、Shewhart控制图、CUSUM控制图、EWMA控制图、关于监控profile的控制图等;另外,本书也包含有关相关数据、多元数据及非参数控制图的一些内容;再者,本书也介绍了有关动态控制图的一些研究成果;最后,作者把有关控制图的ARL及ATS的计算方法进行了较详细的总结。
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
"本书是根据作者多年的全英文教学经验编写而成的,是与作者编写的《概率论与数理统计(英文)》相配套的学习辅导用书。 本书主要围绕概率与随机事件、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、参数估计、假设检验、线性回归分析设计问题,并通过系统、详尽的解答分析,以及对题目背后内涵和关系的深入挖掘来帮助读者进一步提高概率论与数理统计的基本理论水平和实践应用能力。在编写过程中,作者吸取了国内外优秀教材和辅导用书的优点,注重理论与实践相结合。本书系统性强,图例丰富,突出统计思想,着力培养学生分析问题和解决实际问题的能力。 本书可用作高等院校理工科各专业本科生 概率论与数理统计 课程全英文或双语教材的辅助用书,也可供工程技术人员、科技工作者参考。"
本书是一部经典的随机过程著作,叙述深入浅出、涉及面广。主要内容有随机变量、条件期望、马尔可夫链、指数分布、泊松过程、平稳过程、更新理论及排队论等,也包括了随机过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。特别是有关随机模拟的内容,给随机系统运行的模拟计算提供了有力的工具。新版还增加了不带左跳的随机徘徊和生灭排队模型等内容。本书约有700 道习题,其中带星号的习题还提供了解答。 本书可作为计算机科学、保险学、社会科学、生命科学、管理科学与工程等专业随机过程基础课教材。
在数学科学的几乎所有的分支中,不等式常常起着重要的甚至是关键的作用。本书搜集整理了概率论中一批常用的基本不等式,并对其中的绝大多数不等式给出了证明。除了一些熟知的不等式以外,书中对某些不等式还提供了相关的参考文献。
1)第四章---第九章是本书的主体,讲述各种类型的回归方程,包括线性回归方程、拟线性回归方程、约束线性回归方程、非参数回归方程、半参数回归方程、函数系数回归方程(参数变量函数系数线性回归方程,参数变量函数系数半参数回归方程,回归变量函数系数线性回归方程,回归变量函数系数半参数回归方程)、随机过程回归方程(随机过程线性回归方程,Gauss--Markov线性回归方程,随机过程非参数回归方程)、逆回归方程(线性逆回归方程,线性逆回归方程组)以及随机向量密度函数(有文献已经指出,此问题可以化为回归方程的模式来解决),其中有不少为首倡;(2)*章概率理论及附录B测度论,为统计回归分析理论的概率统计基础;(3)第二章Hilbert空间、第三章泛函逼近论,是统计回归分析理论的泛函分析基础,其中相当部分的内容是专为统计回归分
本书是高等学校统计学教学指导分委员会教材.本书从我国经济、管理类各专业教学的实际出发,以统计思想为主线,坚持“少而精”的原则,深入浅出地介绍统计学发展至今的一些基本知识,包含了现有一些常用的统计思想、理论和方法,主要内容包括:总体、样本、统计量的概念,常用分布,点估计理论,假设检验理论,区间估计,线性模型以及统计决策理论和贝叶斯推断等。本书强调统计学的基本思想以及和理论方法的有机结合,并通过实例体现数理统计学的丰富内容和启示读者如何应用统计学的理论和方法。
随着现代科学技术的飞速发展,许多科学研究领域产生了多种复杂数据,复杂数据的统计建模涵盖了许多当代统计分支,推动了当代统计学理论方法的进步与发展,并且其应用层面几乎涉及各领域。具有复杂分层结构的数据在现实生活中很普遍。能完全剖析这类数据,发掘该类数据表象下的潜在规律性对于统计学等科研领域很有意义。本书致力于介绍复杂分层数据分析前沿知识,侧重于系统的理论与算法介绍。内容主要涉及线性分位回归、非参数分位回归、适应性分位回归、可加性分位回归、变系数分位回归、单指数分位回归、分位自回归、复合分位回归、高维分位回归以及贝叶斯分位回归、分层样条分位回归、分层线性分位回归、分层半参数分位回归、复合分层线性分位回归以及复合分层半参数分位回归,等等。
本书是为应用数学专业、数学专业、概率统计专业、信息与计算科学专业本科大学生和非数学专业的硕士生学习数理统计而编写的教材。主要内容有:抽样分布、参数估计、假设检验、方差分析与正交试验设计、线性回归模型。本书每章末附有习题,书后附有答案。