这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
概率论与数理统计是从数量方面研究随机现象的统计规律的一门课程,它是高等院校经济管理类专业的基础课之一。它是在经济管理、质量控制、数量经济学、信息论、预测理论和*理论中有着广泛应用的基础课程。 本书系上海财经大学数学学院编写的经济数学系列教材之一。全书共十章,内容包括事件与概率、条件概率与独立性、随机变量及其分布、随机向量及其分布、数字特征与特征函数、极限定理、统计量与抽样分布、参数估计、假设检验、线性统计推断等。每章均配有不同难易程度的适量习题,书末附有习题答案或提示,供读者参考。 本书坚持理论联系实际,取材新颖,注重科学性、现实性、趣味性,努力使学生从教材中深切地感知概率论与数理统计知识在实际工作与生活中的广泛应用。本书在编写中力求内容完整,做到重点突出、联系实际、由浅入深、通俗
这本经典的概率论教材通过大量的例子介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型变量、连续型变量、变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题类,并在书末给出自检习题的解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学本科生的教材,也适合作为研究生和应用工作者的参考书.
哈罗德·杰弗里(SirHaroldJeffreys,1891~1989年),是英国剑桥大学已故著名物理学家兼应用数学家,他在20世纪30年代相继写出两本著作,即《科学推断》和《概率论》,它们对近几十年来贝叶斯学派的重新兴起有重要作用,值得一读。这本《概率论》侧重对科学方法论主要原则的阐述,旨在为读者提供一种在实践中可以应用、能根据观测数据进行推断而自洽的推理方法。为发展概率论,杰弗里在书中提出六条公理(公理7实为定理9所述乘积规则的推广)、三条约定;还为归纳推理中重要的部分,即根据过去的经验预测未来,提出了八条管辖原则,由此深刻论证了“从经验和数据中获取知识”乃是贝叶斯分析的实质这一观点;杰弗里在本书中还发展了K.皮尔逊的思想,强调“科学的一致性在于其方法而非其内容”,在当代各种新知识、新学科层出不穷的背景下,坚持这一
本书是Springer统计系列丛书之一,旨在让读者深入了解数据挖掘和预测。 随着计算机和信息技术迅猛发展,医学、生物学、金融、以及市场等各个领域的大量数据的产生,处理这些数据以及挖掘它们之间的关系对于一个统计工作者显得尤为重要。本书运用共同的理论框架将这些领域的重要观点做了很好的阐释,重点强调方法和概念基础而非理论性质,运用统计的方法更是突出概念而非数学。另外,书中大量的彩色图例可以帮助读者更好地理解概念和理论。 目次:导论; 监督学习概述; 线性回归模型; 线性分类方法; 基展开与正则性; 核方法; 模型评估与选择; 模型参考与平均; 可加性模型,树与相关方法; 神经网络; 支持向量机器与弹性准则; 原型法和近邻居; 无监督学习。
《有限元分析的数学建模、校核与验证》重点介绍了有限元模型的建立、验证与校核,尤其是详细介绍了p型有限元的基本理论,p型、h型以及hp型有限元的误差估计和收敛性问题。《有限元分析的数学建模、校核与验证》的*特色是将有限元模型的建立与误差控制有机地结合了起来。书中包含众多的实例和练习,通过这些实例和练习可进一步加深读者对有限元法尤其是p型有限元法的理解。
近来,被称为“数据科学家”的研究者备受关注,充分运用数据进行分析,变得越 来越重要。这种活用数据的基础便是“统计与概率”。《BR》统计与概率,不仅对于研究者,对于生活在现代社会的所有人来说都是可以在现实 生活中发挥重要作用的知识。在日常生活中,正确解读数据,从而进行合理的判断,也 是依靠概率和统计的思考方法。《BR》在本书中,以我们身边的话题作为案例,介绍以统计与概率为基础的重要数学方法, 并对于因人工智能的蓬勃发展而备受瞩目的“贝叶斯统计”,也介绍其思考方法与应用实 例。此外,本书还对概率论起源于 17 世纪欧洲的博彩问题,以及“统计大师”汉斯·罗 斯林博士的访谈、随机和随机数的深奥的问题等进行了介绍,希望与读者一同洞悉统计 与概率的本质。