这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
由美国当代著名统计学家L.沃塞曼所著的《统计学完伞教程》是一本几乎包含了统计学领域全部知识的优秀教材,本书除了介绍传统数理统计学的全部内容以外,还包含了Bootstrap方法(白助法)、独立性推断、因果推断、图模型、非参数同归、正交函数光滑法、分类、统计学理论及数据挖掘等统计学领域的新方法和技术.本书不但注重概率论与数理统计基本理论的阐述,同时还强调数据分析能力的培养.本书中含有大量的实例以帮助广大读者快速掌握使用R软件进行统计数据分析。
本书是一部经典的*过程著作,叙述深入浅出、涉及面广。主要内容有*变量、条件期望、马尔可夫链、指数分布、泊松过程、平稳过程、更新理论及排队论等,也包括了*过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。特别是有关*模拟的内容,给*系统运行的模拟计算提供了有力的工具。zui新版还增加了不带左跳的*徘徊和生灭排队模型等内容。本书约有700 道习题,其中带星号的习题还提供了解答。本书可作为计算机科学、保险学、社会科学、生命科学、管理科学与工程等专业*过程基础课教材。
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
概率论与数理统计是从数量方面研究随机现象的统计规律的一门课程,它是高等院校经济管理类专业的基础课之一。它是在经济管理、质量控制、数量经济学、信息论、预测理论和*理论中有着广泛应用的基础课程。 本书系上海财经大学数学学院编写的经济数学系列教材之一。全书共十章,内容包括事件与概率、条件概率与独立性、随机变量及其分布、随机向量及其分布、数字特征与特征函数、极限定理、统计量与抽样分布、参数估计、假设检验、线性统计推断等。每章均配有不同难易程度的适量习题,书末附有习题答案或提示,供读者参考。 本书坚持理论联系实际,取材新颖,注重科学性、现实性、趣味性,努力使学生从教材中深切地感知概率论与数理统计知识在实际工作与生活中的广泛应用。本书在编写中力求内容完整,做到重点突出、联系实际、由浅入深、通俗
《统计理论》是一部经典的讲述统计理论的研究生教程,综合性强,内容涵盖:估计;检验;大样本理论,这些都是研究生要进入博士或者更高层次必须学习的预备知识。为了让读者具备更加强硬的数学背景和更广阔的理论知识,书中不仅给出了经典方法,也给出了贝叶斯推理知识。目次:概率模型;充分统计量;决策理论;假设检验;估计;等价;大样本理论;分层模型;序列分析;附录:测度与积分理论;概率论;数学定理;分布概述。 读者对象:概率统计、数学专业以及相关专业的高年级本科生、研究生和相关的科研人员。
这本经典的概率论教材通过大量的例子介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型变量、连续型变量、变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题类,并在书末给出自检习题的解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学本科生的教材,也适合作为研究生和应用工作者的参考书.
近来,被称为“数据科学家”的研究者备受关注,充分运用数据进行分析,变得越 来越重要。这种活用数据的基础便是“统计与概率”。《BR》统计与概率,不仅对于研究者,对于生活在现代社会的所有人来说都是可以在现实 生活中发挥重要作用的知识。在日常生活中,正确解读数据,从而进行合理的判断,也 是依靠概率和统计的思考方法。《BR》在本书中,以我们身边的话题作为案例,介绍以统计与概率为基础的重要数学方法, 并对于因人工智能的蓬勃发展而备受瞩目的“贝叶斯统计”,也介绍其思考方法与应用实 例。此外,本书还对概率论起源于 17 世纪欧洲的博彩问题,以及“统计大师”汉斯·罗 斯林博士的访谈、随机和随机数的深奥的问题等进行了介绍,希望与读者一同洞悉统计 与概率的本质。
《有限元分析的数学建模、校核与验证》重点介绍了有限元模型的建立、验证与校核,尤其是详细介绍了p型有限元的基本理论,p型、h型以及hp型有限元的误差估计和收敛性问题。《有限元分析的数学建模、校核与验证》的*特色是将有限元模型的建立与误差控制有机地结合了起来。书中包含众多的实例和练习,通过这些实例和练习可进一步加深读者对有限元法尤其是p型有限元法的理解。
" 《概率论及其应用(卷1·第3版)》涉及面极广,不仅讨论了概率论在离散空间中的诸多课题,也涉及了概率论在物理学、化学、生物学(特别是遗传学)、博弈论及经济学等方面的应用。主要内容有:样本空间及其上的概率计算,独立*变量之和的*起伏,事件的组合及条件概率,离散*变量及其数字特征,大数定律,离散的马尔可夫过程及其各种重要特征,更新理论等。除正文外,《概率论及其应用(卷1·第3版)》还附有数百道习题和大量的附录。 《概率论及其应用(卷1·第3版)》既可作概率论及相关学科的教学参考书,亦可作为科学研究的引导书。特别是此书中有关*性和概率思想的论述,极具启发性。"
《基于回归视野的统计学习》作者是宾夕法尼亚大学数理统计系教授,研究领域广泛,在社会科学和自然科学均有很深的造诣。本书主要阐述统计学习的应用知识,各章还有实际应用实例,可作为统计、社会科学和生命科学等相关领域的研究生和科研人员的参考书。
伯特瑟卡斯、齐齐克利斯合著的《概率导论(第2版修订版)/图灵数学统计学丛书》是在MIT开设概率论入门课程的基础上编写的,内容全面,例题和习题丰富,结构层次性强,能够满足不同读者的需求。书中介绍了概率模型、离散随机变量和连续随机变量、多元随机变量以及极限理论等概率论基本知识,还介绍了矩母函数、条件概率的现代定义、独立随机变量的和、很小二乘估计等不错内容。 本书可作为所有高等院校概率论入门的基础教程,也可作为有关概率论方面的参考书。
本书系统讲述统计中多元分布的基本理论和常用的多元数据分析方法。多元分布理论包括Wishart分布、T2分布、A分布、多元Beta分布、多元正态的参数估计和假设检验及一般多元分布的参数估计和假设检验理论。多元数据分析方法包括多元线性回归模型、判别分析、主成分分析、因子分析、相应分析、聚类分析、典型相关分析和多维标度法。既强调作为一个学科分支的理论系统性,对一些基本定理给出了必要而简明的数学推导,又注重数据分析方法的多样性,对各方法从背景、数学工具的使用、计算步骤到应用技巧及各种方法之间的联系,都有较详细的阐述,包括近期的一些新发展。书中给出一些有启发性的实例和习题。书末附录给出一些代数补充知识。
本书章节安排与 概率论与数理统计 普通教科书中的章节安排基本平行.书中每章的各节有内容要点与评注、典型例题以及习题;各章都设有专题讨论,每个专题以典型例题解析的方式阐述了围绕该专题的解题方法与技巧,每章末附有补充题,是在前各专题的引领下,对知识点融会贯通、综合运用的体现,它包含客观题和主观题,客观题的设置意在考查对该章知识点全面而深入的理解,主观题的设置意在考查对该章知识点的综合运用能力与掌握.对于典型例题的讲解处理得非常细致,试图营造一对一辅导的氛围,以帮助读者理解和掌握.对于专题的处理,力图理清知识点之间的脉络与联系,实现对知识的系统理解.本书可作为学生学习 概率论与数理统计 课程时的同步学习辅导材料,也可作为考研复习的辅导教材.