这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
由美国当代著名统计学家L.沃塞曼所著的《统计学完伞教程》是一本几乎包含了统计学领域全部知识的优秀教材,本书除了介绍传统数理统计学的全部内容以外,还包含了Bootstrap方法(白助法)、独立性推断、因果推断、图模型、非参数同归、正交函数光滑法、分类、统计学理论及数据挖掘等统计学领域的新方法和技术.本书不但注重概率论与数理统计基本理论的阐述,同时还强调数据分析能力的培养.本书中含有大量的实例以帮助广大读者快速掌握使用R软件进行统计数据分析。
本书是一部经典的*过程著作,叙述深入浅出、涉及面广。主要内容有*变量、条件期望、马尔可夫链、指数分布、泊松过程、平稳过程、更新理论及排队论等,也包括了*过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。特别是有关*模拟的内容,给*系统运行的模拟计算提供了有力的工具。zui新版还增加了不带左跳的*徘徊和生灭排队模型等内容。本书约有700 道习题,其中带星号的习题还提供了解答。本书可作为计算机科学、保险学、社会科学、生命科学、管理科学与工程等专业*过程基础课教材。
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
概率论与数理统计是从数量方面研究随机现象的统计规律的一门课程,它是高等院校经济管理类专业的基础课之一。它是在经济管理、质量控制、数量经济学、信息论、预测理论和*理论中有着广泛应用的基础课程。 本书系上海财经大学数学学院编写的经济数学系列教材之一。全书共十章,内容包括事件与概率、条件概率与独立性、随机变量及其分布、随机向量及其分布、数字特征与特征函数、极限定理、统计量与抽样分布、参数估计、假设检验、线性统计推断等。每章均配有不同难易程度的适量习题,书末附有习题答案或提示,供读者参考。 本书坚持理论联系实际,取材新颖,注重科学性、现实性、趣味性,努力使学生从教材中深切地感知概率论与数理统计知识在实际工作与生活中的广泛应用。本书在编写中力求内容完整,做到重点突出、联系实际、由浅入深、通俗
《统计理论》是一部经典的讲述统计理论的研究生教程,综合性强,内容涵盖:估计;检验;大样本理论,这些都是研究生要进入博士或者更高层次必须学习的预备知识。为了让读者具备更加强硬的数学背景和更广阔的理论知识,书中不仅给出了经典方法,也给出了贝叶斯推理知识。目次:概率模型;充分统计量;决策理论;假设检验;估计;等价;大样本理论;分层模型;序列分析;附录:测度与积分理论;概率论;数学定理;分布概述。 读者对象:概率统计、数学专业以及相关专业的高年级本科生、研究生和相关的科研人员。
这本经典的概率论教材通过大量的例子介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型变量、连续型变量、变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题类,并在书末给出自检习题的解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学本科生的教材,也适合作为研究生和应用工作者的参考书.
数学史与数学教育(HPM)是中小学数学教育的一个研究领域。在统计教学中融入数学史,有助于学生对统计概念的理解。本书深入挖掘统计核心概念“平均数”“中位数”“众数”的历史现象,开展了HPM教学的实证研究。全书围绕教学内容、学生、教师三个方面,系统研究了课堂教学中运用数学史的教学活动、数学史融入统计概念教学后学生学习认知发生的变化以及对教师专业发展产生的影响。
哈罗德·杰弗里(SirHaroldJeffreys,1891~1989年),是英国剑桥大学已故著名物理学家兼应用数学家,他在20世纪30年代相继写出两本著作,即《科学推断》和《概率论》,它们对近几十年来贝叶斯学派的重新兴起有重要作用,值得一读。这本《概率论》侧重对科学方法论主要原则的阐述,旨在为读者提供一种在实践中可以应用、能根据观测数据进行推断而自洽的推理方法。为发展概率论,杰弗里在书中提出六条公理(公理7实为定理9所述乘积规则的推广)、三条约定;还为归纳推理中重要的部分,即根据过去的经验预测未来,提出了八条管辖原则,由此深刻论证了“从经验和数据中获取知识”乃是贝叶斯分析的实质这一观点;杰弗里在本书中还发展了K.皮尔逊的思想,强调“科学的一致性在于其方法而非其内容”,在当代各种新知识、新学科层出不穷的背景下,坚持这一
本书被公认为是一套概率论方面的标准经典教科书,供高年级大学生和研究生使用,同时也是概率论和统计学方面研究人员经常使用的参考书。本书把概率论建立在严格的逻辑基础上,理论体系完整。在第4版中增加了距离空间测定、随机游动、布朗运动及不变原理四部分,后两部分尤为精彩。全书除引言外,两卷共分五部分,第1卷包括三部分,涉及概率论的基本概念和数学手段。读者对象:数学及相关专业的研究生。
本书是Springer统计系列丛书之一,旨在让读者深入了解数据挖掘和预测。 随着计算机和信息技术迅猛发展,医学、生物学、金融、以及市场等各个领域的大量数据的产生,处理这些数据以及挖掘它们之间的关系对于一个统计工作者显得尤为重要。本书运用共同的理论框架将这些领域的重要观点做了很好的阐释,重点强调方法和概念基础而非理论性质,运用统计的方法更是突出概念而非数学。另外,书中大量的彩色图例可以帮助读者更好地理解概念和理论。 目次:导论; 监督学习概述; 线性回归模型; 线性分类方法; 基展开与正则性; 核方法; 模型评估与选择; 模型参考与平均; 可加性模型,树与相关方法; 神经网络; 支持向量机器与弹性准则; 原型法和近邻居; 无监督学习。