《管理运筹学及智能方法》主要是针对管理类的研究生编写,全书共3篇11章。篇包括运筹学传统内容共6章,其中章线性规划、第3章动态规划和第4章多目标规划主要是对本科阶段运筹学的复习与回顾,而第2章非线性规划和第5章排队论一般在本科阶段都没有系统学习,作为研究生无疑应该认真学好这两章;第2篇共3章,每一章都介绍一种典型的搜索算法,随着计算机技术的发展,非导数优化算法逐步成熟和完善,这些算法对于开展科学研究是不可多得的工具;第3篇共2章,主要介绍神经网络和模糊系统的基本概念,面对日益复杂的社会经济系统,两种智能方法所具有的鲁棒性和容错性用于复杂系统仿真具有特殊的意义。 全书每章都配备数量的习题,有的章节还附有相应的计算程序。诸克军主编的《管理运筹学及智能方法》适合于高等院校管理类专业研究生或者博士生
本书介绍了线性规划、对偶理论、整数规划、目标规划、运输与指派问题、网络模型、网络计划、动态规划、排队论、存储论、决策论、多属性决策与博弈论等运筹学主要分支的基本理论、基本概念和计算方法,用较多的例题介
《数学建模方法进阶》是基于作者多年从事本科生、研究生数学建模以及相关课程教学的经验,综合参考了外数学建模、竞赛论文、有关问题的学术文献等编写而成。全书从数学建模方法论开始,以丰富的实际案例为点,以各类数学方法为线,并包含了一些比较深刻的数学方法和思维方式。《数学建模方法进阶》可以作为高等学校各专业、研究生学习数学建模课程、参加数学建模竞赛的,也可以作为研究人员研究相关课题的参考书。
《数学建模入门--125个有趣的经济管理问题》由杨桂元、李天胜编著,本书是数学在实际问题特别是在经济、管理问题中的应用实例,根据实际问题涉及的数学模型,编写了125个与大学数学教学内容相配套的数学模型应用实例,每一篇内容独立成文,以经济管理和日常生活中的问题为切入点,然后用数学方法求解,有前提有结论,并且对该篇应用的数学方法——理论依据和应用推广进行评注。全书分为4篇,分别是:篇微积分模型;第2篇线性代数模型;第3篇概率论模型;第4篇数理统计模。 《数学建模入门--125个有趣的经济管理问题》可作为高等院校学生学习数学建模的辅导用书,也可作为相关领域学者研究经济、管理问题时的参考读物。
《数学建模入门--125个有趣的经济管理问题》由杨桂元、李天胜编著,本书是数学在实际问题特别是在经济、管理问题中的应用实例,根据实际问题涉及的数学模型,编写了125个与大学数学教学内容相配套的数学模型应用实例,每一篇内容独立成文,以经济管理和日常生活中的问题为切入点,然后用数学方法求解,有前提有结论,并且对该篇应用的数学方法——理论依据和应用推广进行评注。全书分为4篇,分别是:篇微积分模型;第2篇线性代数模型;第3篇概率论模型;第4篇数理统计模。 《数学建模入门--125个有趣的经济管理问题》可作为高等院校学生学习数学建模的辅导用书,也可作为相关领域学者研究经济、管理问题时的参考读物。
《马尔可夫决策过程理论与应用》从马氏决策的一般理论出发,介绍了马氏决策的基本概念,给出了决策过程的表述方法并介绍了不同准则条件下的基本理论,还给出了作者对一些实际问题的研究心得,为读者提供参考. 《马尔可夫决策过程理论与应用》在《实用马尔可夫决策过程》一书的基础上增加了 Bandit 过程、部分可观察过程、软件可靠性建模分析以及大规模计算方法等章节,为读者提供更为宽阔的视野.
整数规划是运筹学与化理论的重要分支之一,整数规划模型、理论和算法在管理科学、经济、金融工程、T业管理和其他领域有着广泛的应用,本书主要介绍经典的线性整数规划理论和算法,同时简单介绍近年发展起来的非线性整数规划理论,主要内容包括:线性和非线性整数规划问题和模型、线性规划基础、全单模矩阵、图论和网络流问题、算法复杂性理论、分枝定界算法、割平面方法、多面体和有效不等式理论、整数规划对偶理论、0-1二次整数规划与SDP松弛、0-1多项式整数规划等。 本书适合运筹学、管理科学、应用数学和工程类专业的高年级本科生和研究生作为整数规划的教材和参考书,读者只需具有高等数学基础就可以阅读。
《谁排 ?:关于评价和排序的科学》是关于评分和排名科学的著作。它是搜索排序姊妹篇的第二本。主要内容有:排名概述、梅西法、科利法、基纳法、埃洛体系、马尔可夫法、攻防评分法、基于重新排序的排名方法、分差、用户偏好评分、处理平局、加入权重、“假如……会怎样”的问题与敏感性、排名聚合、比较排名的方法、数据等。《谁排 ?:关于评价和排序的科学》可作为数学、计算机、网络技术、管理学和数据科学等专业的参考书,也可作为教材使用。
《谁排 ?:关于评价和排序的科学》是关于评分和排名科学的著作。它是搜索排序姊妹篇的第二本。主要内容有:排名概述、梅西法、科利法、基纳法、埃洛体系、马尔可夫法、攻防评分法、基于重新排序的排名方法、分差、用户偏好评分、处理平局、加入权重、“假如……会怎样”的问题与敏感性、排名聚合、比较排名的方法、数据等。《谁排 ?:关于评价和排序的科学》可作为数学、计算机、网络技术、管理学和数据科学等专业的参考书,也可作为教材使用。
整数规划是运筹学与化理论的重要分支之一,整数规划模型、理论和算法在管理科学、经济、金融工程、T业管理和其他领域有着广泛的应用,本书主要介绍经典的线性整数规划理论和算法,同时简单介绍近年发展起来的非线性整数规划理论,主要内容包括:线性和非线性整数规划问题和模型、线性规划基础、全单模矩阵、图论和网络流问题、算法复杂性理论、分枝定界算法、割平面方法、多面体和有效不等式理论、整数规划对偶理论、0-1二次整数规划与SDP松弛、0-1多项式整数规划等。 本书适合运筹学、管理科学、应用数学和工程类专业的高年级本科生和研究生作为整数规划的教材和参考书,读者只需具有高等数学基础就可以阅读。
《数学建模方法进阶》是基于作者多年从事本科生、研究生数学建模以及相关课程教学的经验,综合参考了外数学建模、竞赛论文、有关问题的学术文献等编写而成。全书从数学建模方法论开始,以丰富的实际案例为点,以各类数学方法为线,并包含了一些比较深刻的数学方法和思维方式。《数学建模方法进阶》可以作为高等学校各专业、研究生学习数学建模课程、参加数学建模竞赛的,也可以作为研究人员研究相关课题的参考书。
《证据网络推理学习理论及其应用》提出并建立了一套完整的证据网络理论和方法体系,对证据网络的定义、结构建模、参数表示、不同参数模型下的推理及证据网络参数和结构学习的相关理论和方法展开了深入论述。《证据网络推理学习理论及其应用》共分为7章,内容包括:不确定性建模理论,不确定性推理方法,证据网络提出的价值与意义,证据网络模型的基本概念、特点、关键要素和建模流程,证据网络的结构与参数,证据网络的推理问题,不同参数模型下的推理策略与算法,证据网络参数学习模型与计算方法,证据网络信度规则模型库结构学习,以及相关应用研究等。《证据网络推理学习理论及其应用》主要面向管理科学与工程、控制科学与工程、信息技术等领域的学者及研究生,也可供相关领域的研究人员阅读参考。
《证据网络推理学习理论及其应用》提出并建立了一套完整的证据网络理论和方法体系,对证据网络的定义、结构建模、参数表示、不同参数模型下的推理及证据网络参数和结构学习的相关理论和方法展开了深入论述。《证据网络推理学习理论及其应用》共分为7章,内容包括:不确定性建模理论,不确定性推理方法,证据网络提出的价值与意义,证据网络模型的基本概念、特点、关键要素和建模流程,证据网络的结构与参数,证据网络的推理问题,不同参数模型下的推理策略与算法,证据网络参数学习模型与计算方法,证据网络信度规则模型库结构学习,以及相关应用研究等。《证据网络推理学习理论及其应用》主要面向管理科学与工程、控制科学与工程、信息技术等领域的学者及研究生,也可供相关领域的研究人员阅读参考。
《运筹学(第四版)》在第三版的基础上修订完善而成,主要内容有线性规划、整数线性规划、非线性规划、动态规划、图与网络分析、网络计划技术、排队论、决策分析、对策论等。第四版继续保持了前三版的厚理论、宽口径、理论联系实际的特点和精炼、严谨的风格,第三版的绪论精炼为运筹学简介,作为引言,并结合当前的研究热点——复杂网络及大数据分析,在“图与网络分析”中增加了“复杂网络简介”,在“对策论”中增加了“网络对策”。此外对部分章节的内容和习题根据需要进行了增删或修改。习题分为(A),(B)两部分,难度有所差异,可供读者选择。教材配套的数字课程包含各章相关的应用实例和程序。《运筹学(第四版)》可作为数学与应用数学、信息与计算科学、金融数学等专业的运筹学课程教材,也可作为管理、系统工程等专业的专
智能优化混合算法是一种以某类优化算法为基础,融合其他智能算法或理论的混合算法,可用于求解各种工程问题优化解。本书系统讨论了现今应用较为广泛的几种智能优化混合算法,主要内容来源于作者多年的研究成果,使读者比较全面地了解智能优化混合算法的相关知识及应用。本书理论联系实际,集知识性、专业性、操作性、技能性为一体,对智能优化混合算法的原理、步骤、应用等进行了全面且详细的介绍。
《数学建模入门:125个有趣的经济管理问题》是数学在实际问题特别是在经济、管理问题中的应用实例,根据实际问题涉及的数学模型,编写了125个与大学数学教学内容相配套的数学模型应用实例。每一篇内容独立成文
离散车间生产调度是提高运营效率、降低成本,乃至取得竞争优势的重要手段和有力工具。随着离散车间生产调度问题的深入研究,新问题、新模型和新方法不断涌现。本书共7章:章为绪论;第2章为Job-shop很优作
《谁排?:关于评价和排序的科学》是关于评分和排名科学的著作。它是搜索排序姊妹篇的第二本。主要内容有:排名概述、梅西法、科利法、基纳法、埃洛体系、马尔可夫法、攻防评分法、基于重新排序的排名方法、分差、用户偏好评分、处理平局、加入权重、“假如……会怎样”的问题与敏感性、排名聚合、比较排名的方法、数据等。《谁排?:关于评价和排序的科学》可作为数学、计算机、网络技术、管理学和数据科学等专业的参考书,也可作为教材使用。