如果你是一个有 数学焦虑症 的人,你可能不会相信有一天你会爱上数学。 原因在于,我们在学校所学的数学知识看上去不过是一堆沉闷的规则、定律和公理,都是前人传下来的,而且是不容置疑的。在《魔鬼数学》中,世界知名数学家乔丹?艾伦伯格告诉我们这样的认识是错误的。数学与我们所做的每一件事都息息相关,可以帮助我们洞见在混沌和嘈杂的表象之下日常生活的隐性结构和秩序。数学是一门告诉我们 如何做才不会犯错 的科学,是经年累月的努力、争论所锤炼出来的。 你应该提前多长时间到达机场?民意调查的结果真的能代表人们的意愿吗?为什么父母都是高个子,孩子的身高却比较矮?用什么策略买**才能中大奖?《魔鬼数学》运用数学方法分析和解决了很多的日常生活问题,帮助数学门外汉习得用数学思维思考问题的技能。 作者用数
数学不仅有抽象的计算和公式,还与人类文化和思维紧密相关。 数学对生活的影响无处不在,它甚至可以改变我们对世界的认知。原来数学和语文、美术、科学这些学科竟然密不可分。用故事串起数学明珠,带你畅游神秘数学王国,书中每一页都充满惊喜与挑战!从电影里幸存者的故事,到游戏中藏着的概率,再到战争中的密码学,都有数学在其中起作用!不仅如此,数学还有属于自己的美学和哲学。它像艺术家一样创作美丽的图案,像哲学家一样思考世界,像诗人一样描绘世界,像侦探一样揭破谜案。 加入这场数学派对,你会发现:数学或许不是你以为的那样,它不仅不枯燥,还蕴藏着无限的乐趣。
A.H.施利亚耶夫编著的《*金融数学基础(第1卷事实模型)》原版自1998年出版以来,被认为是“*金融数学方面深刻的一本著作”。全书共分两卷。每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系。又相对独立。读者可把本书看作一本“*金融数学全书”。 卷的章有关国际金融市场以及金融理论和金融工程的“事实”。它可看作一位前苏联数学家对西方金融市场和金融理论、金融工程的独特理解。其中作者不但概述了金融市场的基本状况、金融学的基本概念以及Markowitz证券组合选择理论、资本资产定价模型《CAPM)、Ross套利定价理论(APT)、有效市场理论等。甚至还简要介绍了保险业和精算理论。 卷的后三章都有关金融学的*“模型”:离散模型、连续模型和统计模型。作者提出,Doob分解、局部鞅、鞅变换等概念
引力定律原本是解释和预测物体之间引力交互的一个基本物理定律,但有趣的是,人们发现在交通出行、人口迁移、商品贸易、信息通讯、科研合作等大量不同的社会交互现象中,空间交互的强度都近似服从引力定律。在过去的一百多年里,引力模型也被大量应用于地点之间人口、商品、交通、信息等流动量的预测工作中。但是,社会系统中的引力定律为什么存在?如何从*原理出发解释空间交互的引力模型?有没有比引力模型更准确、更普适的模
A.H.施利亚耶夫编著的《*金融数学基础(第2卷理论)》原版自1998年出版以来,被认为是“*金融数学方面深刻的一本著作”。全书共分两卷,每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系,又相对独立。读者可把本书看作一本“*金融数学全书”。 第二卷有关“理论”的四章是:“*金融模型中的套利理论”或“定价理论”:先是“离散时间”,再是“连续时间”。“套利理论”主要指资产定价的和第二基本定理:市场无套利机会等价于存在(局部)等价概率鞅测度,使得所有证券的折现价格过程为鞅(定理),并且当市场完全时,这样的鞅测度是的(第二定理)。这些定理在近二、三十年的研究中已经近乎尽善尽美。无论对数学还是对金融的发展都有深远影响,但所涉及的数学工具也越来越艰深。作者高瞻远瞩。抓住
《建筑中的数学之旅》带领读者享受了一次世界壮观建筑物背后的数学之旅,探讨了基础数学与建筑的相互作用,并深入观察了建筑物的美学、历史和结构。《建筑中的数学之旅》围绕两条历史叙事主线展开介绍。基本叙事主线主要集中在西方某些伟大建筑的建筑形式(几何学、对称性及比例)和结构(推力、负载、张力、挤压问题)上,涵盖从金字塔到20世纪的标志性建筑,争取用赫赫有名的例子说明建筑的重要特征。第二条叙事主线从历史的角度逐步阐述当前的初等数学,包括欧几里得几何知识、三角学、向量的性质、二维和三维解析几何,以及微积分基础。Hahn旨在将两条叙事主线交织在一起展示它们是如何互相影响的。另外,他还通过彩图1拼贴了各种历史性建筑(比例相同),给出了《建筑中的数学之旅》的快速导览,并在书中探讨了这里的许多建筑,特别对其
本书是普通高等教育“十一五”*规划教材,是以*(原国家*)1995年颁布的高等工科院校本科高等数学课程教学基本要求为纲,广泛吸取国内外知名大学的教学经验而编写的工科数学分析课程教材。本书在第1版的基础上加强了分析与代数、几何的相互渗透,适当增加了现代数学的观点与方法,提高理论知识平台,并调整了部分内容的顺序。
本书是为高等师范院校的数学建模课程编写的教材,体现了高等师范院校的培养目标和办学特点.内容包括用MATLAB求解数学问题、数学建模概述、差分方程模型、常微分方程模型、数值逼近模型、统计回归模型和**化模型.本书注重数学建模的基础知识和基本技能,并通过实例进行案例教学,既包括一些能够与中学数学相衔接的经典的建模问题,又包括一些由近年来大学生数学建模竞赛题简化改编的案例;既重视建模方法和技巧的训练,又重视使用MATLAB软件求解模型的能力培养.习题与教学内容紧密配合,并在书后附有部分习题的答案或提示.随书附送的光盘中包含课堂教学演示电子文档.
本书针对专升本学生或经管类、文科类学生学时少的教学特点,在内容上进行了重新编排,打破了传统的教学模式,兼顾一元函数微积分内容,并以多元函数微积分内容为主,以简明的形式,突出了微积分课程的主干内容,精心挑选了例题与习题,注重数学的应用,增加了数学建模以及数学在经济学中的应用等内容,采用图文并茂形式,用不多的篇幅介绍了微积分的主要知识内容。本书特点针对具有一元微积分基础,并想进一步深造提高的学生选用,也适用于管理类和技术类人员的进修学习选用,同时也可供与微积分课程相关人员查阅。
通过阐述数学模型在生态学的应用和研究,定量化地展示生态系统中环境因子和生物因子的变化过程,揭示生态系统的规律和机制,以及其稳定性、连续性的变化,使生态数学模型在生态系统中发挥巨大作用。在科学技术迅猛发展的今天,通过该书的学习,可以帮助读者了解生态数学模型的应用、发展和研究的过程;分析不同领域、不同学科的各种各样生态数学模型;探索采取何种数学模型应用于何种生态领域的研究;掌握建立数学模型的方法和技巧。此外,该书还有助于加深对生态系统的量化理解,培养定量化研究生态系统的思维。 杨东方、王凤友编著的《数学模型在生态学的应用及研究》主要内容为:介绍各种各样的数学模型在生态学不同领域的应用,如在地理、地貌、水文和水动力以及环境变化、生物变化和生态变化等领域的应用。详细阐述了数
《工程数学(下)(第二版)》共6篇30章,分为上、下两册。上册包括线性代数、概率论、数理统计等基本内容,下册包括复变函数、积分变换、数理方程与特殊函数等基本内容。《工程数学(下)(第二版)》选材适当、结构合理,每章有小结、重要词汇中英文对照,在应用性较强的章节后还配有数学实验基础知识,便于教师教学和读者自学。
本书介绍了作为管理科学基础的定量分析方法所涉及的数学基础知识,主要包括部分高等代数基础知识、预测理论、排队论、模拟理论、计划评审与技术、图和网络、规划问题、决策分析、对策论等内容。在每篇伊始介绍理论知识产生的历史背景与应用问题,然后引入定义与基本定理,再通过例题详细讲解理论方法的应用,*后在每篇结尾部分附有案例分析和习题。本书作者作为管理科学与决策分析方向的责任教授,根据多年从事管理科学、运筹学、定量分析等课程的教学经验,在各章节都采用了易于读者理解的经典案例。对于任何一个想要了解定量分析方法和运筹学的读者而言,这都是一本不可多得的教材。本书既可作为MPA、MBA、EMBA等研究生的教材,也可作为对定量分析感兴趣的研究人员的学习参考资料。
本书从信息科学的角度讲解离散数学,在保持数学体系完整性和数学内容严谨性的同时,用生动活泼的语言介绍离散数学四大分支(数理逻辑、集合论、抽象代数、冈论)的发展史及其与信息科学的紧密联系,用深入浅出的语言介绍离散数学的核心思想、基本概念和主要结论,同时介绍一些著名科学家的逸闻趣事,其目的是帮助读者在学习离散数学知识的同时了解其在信息科学中的应用,提高自身的科学素养和人文素养。
本书介绍数学建模和数学实验中的一些基本知识以及数学建模竞赛中的一些典型问题,主要内容包括数学建模概论、初等数学模型、微分方程与差分方程模型、随机模型、规划模型、图论模型、其他模型、 Mathematica软件简介、LINDO 软件简介等。本书所举案例均具有很强的实践性和针对性,其中的数学实验以数学软件为平台,将数学知识与计算机操作方法有机地融为一体。 本书可作为高等学校各专业学生数学建模与数学实验课程的教材,也可供相关专业的研究生、教师及工程技术人员参考。
本书是国家自然科学基金面上项目:具有大量不规则颗粒*分布区域的模拟方法及其在混凝土数值模拟中的应用(11171181).2012.01-2015.12。本书共10章,主要内容包括:大量不规则颗粒*分布区域的二维数学模型,大量星形*分布区域的二维数学模型,大量凸多边形*分布区域的二维数学模型,大量椭球*分布区域的数学模型,大量不规则颗粒*分布区域的三维数学模型,大量凸多面体*分布区域的三维数学模型,大量星形*分布区域的三维数学模型,有限元网格划分与力学分析试算。
本书在借鉴现有的数学方法和分析工具的基础上,利用Lyapunov分析的方法、Khasminskii的平稳分布理论及周期性理论,研究了随机多种群互惠模型、两类随机捕食-食饵模型及具有流行病的随机竞争种群模型等。着重讨论几类种群模型解的存在*性、遍历性及周期解的存在性问题。本书的研究既丰富了随机微分方程及随机种群系统的理论,也为生态资源的保护和开发利用提供有效建议。
本书是一本指导大学生全方位备战数学建模竞赛的辅导书,从多角度介绍了数学建模及相关竞赛的背景知识;按照参赛流程解答了数学建模竞赛的常见问题;介绍了数学建模竞赛中常用的软件;讲解了数学建模的常用模型;精选了典型赛题进行详解;邀请了获奖学生和指导教师分享成功经验;介绍了数学建模竞赛过程中常用的网站。 本书在解答数学建模竞赛中的常见问题时,不仅解答了组建团队、赛前准备和时间安排等问题,还解答了文献检索、撰写论文及论文排版的相关问题,旨在使读者对数学建模的整个流程有非常清晰的认识。 本书不仅介绍了历年数学建模竞赛中常用的方法,分析了相关的赛题,还详解了实现的程序代码,让学生真正做到学以致用,而不是纸上谈兵。本书还邀请了获奖参赛队和优秀指导教师,从不同的角度分享比赛中的成功经验,为参赛学