本书重点阐述四类算子的不动点或零点的迭代构造算法.这四类算子分别是非扩张算子、伪压缩算子、单调算子与增生算子。全书共分为四章:引言与基础知识;Hilbert空间中非扩张映像的不动点理论与迭代算法;伪压缩映像的不动点理论与迭代算法;Banach空间中非扩张映像的不动点理论与迭代算法。
《散乱数据拟合的模型、方法和理论(第二版)》是应用数学与计算数学中有关曲面及多元函数插值、逼近、拟合的入门书籍,从多种物理背景、原理出发,导出相应的散乱数据拟合的数学模型及计算方法,进而逐个进行深入的理论分析。书中介绍了多元散乱数据拟合的一般方法,包括多元散乱数据多项式插值、基于三角剖分的插值方法、Boole和与Coons曲面、Sibson方法或自然邻近法、Shepard方法、Kriging方法、薄板样条方法、MQ拟插值法、径向基函数方法、运动最小二乘法、隐函数样条方法、R函数法等。同时还特别介绍了近年来国际上越来越热并在无网格微分方程数值解方面有诸多应用的径向基函数方法及其相关理论。
《散乱数据拟合的模型、方法和理论(第二版)》是应用数学与计算数学中有关曲面及多元函数插值、逼近、拟合的入门书籍,从多种物理背景、原理出发,导出相应的散乱数据拟合的数学模型及计算方法,进而逐个进行深入的理论分析。书中介绍了多元散乱数据拟合的一般方法,包括多元散乱数据多项式插值、基于三角剖分的插值方法、Boole和与Coons曲面、Sibson方法或自然邻近法、Shepard方法、Kriging方法、薄板样条方法、MQ拟插值法、径向基函数方法、运动小二乘法、隐函数样条方法、R函数法等。同时还特别介绍了近年来国际上越来越热并在无网格微分方程数值解方面有诸多应用的径向基函数方法及其相关理论。
如何通过25次简单迭代得到圆周率的4500万位有效数字?利用深刻的数学思想以及高超的算法设计,就可以产生如此有威力的算法。本书用比较浅显的数学知识,比如三角函数、级数、迭代等概念,解释如何得到圆周率计算的高效算法。希望通过这本小册子,让读者从一个很小的角度感悟到计算机时代算法的基本思想。
《解析数论研究》中作者采用正确的方法,解决了大整数表为两个平方与一个素数之和这个猜想,给出能表为两平方和的整数的分布渐近公式这一经典问题的带有O型余项的结果,并对相邻素数差问题、奇数Goldbach猜想、三维除数问题等问题进行重新处理(以前一些处理有问题),给出适当的结果。《解析数论研究》适合从事解析数论研究的专家学者阅读。
孩子一看就停不下来的数学科普漫画!故事发生在TOP森林,这里的狐狸老板生意头脑 好,总是用一些数学相关的谜题或盲点来迷惑大家,幸好有推理能力 、数学逻辑清楚的猫儿摩斯,协助小动物们破解一个个数学谜团。快跟着侦探猫尔摩斯一起拿下小学1-3年级的数学知识点,锻炼逻辑推理能力吧!本套书共六册,书中每一篇漫画都围绕一个小学数学知识点,讲述一个数学推理故事。透过孩子喜欢的侦探、漫画、幽默、小动物等元素,把望而生畏的数学难题故事化、生活化、场景化。还有保姆级的解题过程,每个步骤统统给你画出来, 让孩子看懂!每篇后还设计了拓展习题让孩子思考练习,附有详细答案。这套书不但能激发孩子对数学的兴趣,引导孩子一步步深入思考解题,还能让孩子学会举一反三,领略数学的美妙与乐趣,自然而然地建立起数学概念,培养逻辑
有限元语言是一种适用于有限元方法求解偏微分方程的模型语言。采用有限元语言编程就是书写偏微分方程和算法,然后由生成器产生FORTRAN语言的有限元程序。本书的主要内容包括:微分方程表达式,单物理场算法和多场耦合有限元算法的描述语言;元件化程序设计方法;有限元的数据结构;形函数库,微分算子库,单物理算法库等。
《解析数论研究》中作者采用正确的方法,解决了大整数表为两个平方与一个素数之和这个猜想,给出能表为两平方和的整数的分布渐近公式这一经典问题的带有O型余项的结果,并对相邻素数差问题、奇数Goldbach猜想、三维除数问题等问题进行重新处理(以前一些处理有问题),给出适当的结果。《解析数论研究》适合从事解析数论研究的专家学者阅读。
《散乱数据拟合的模型、方法和理论(第二版)》是应用数学与计算数学中有关曲面及多元函数插值、逼近、拟合的入门书籍,从多种物理背景、原理出发,导出相应的散乱数据拟合的数学模型及计算方法,进而逐个进行深入的理论分析。书中介绍了多元散乱数据拟合的一般方法,包括多元散乱数据多项式插值、基于三角剖分的插值方法、Boole和与Coons曲面、Sibson方法或自然邻近法、Shepard方法、Kriging方法、薄板样条方法、MQ拟插值法、径向基函数方法、运动最小二乘法、隐函数样条方法、R函数法等。同时还特别介绍了近年来国际上越来越热并在无网格微分方程数值解方面有诸多应用的径向基函数方法及其相关理论。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematic性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematic性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
《解析数论研究》中作者采用正确的方法,解决了大整数表为两个平方与一个素数之和这个猜想,给出能表为两平方和的整数的分布渐近公式这一经典问题的带有O型余项的结果,并对相邻素数差问题、奇数Goldbach猜想、三维除数问题等问题进行重新处理(以前一些处理有问题),给出适当的结果。《解析数论研究》适合从事解析数论研究的专家学者阅读。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematic性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
孩子一看就停不下来的数学科普漫画!故事发生在TOP森林,这里的狐狸老板生意头脑 好,总是用一些数学相关的谜题或盲点来迷惑大家,幸好有推理能力 、数学逻辑清楚的猫儿摩斯,协助小动物们破解一个个数学谜团。快跟着侦探猫尔摩斯一起拿下小学1-3年级的数学知识点,锻炼逻辑推理能力吧!本套书共六册,书中每一篇漫画都围绕一个小学数学知识点,讲述一个数学推理故事。透过孩子喜欢的侦探、漫画、幽默、小动物等元素,把望而生畏的数学难题故事化、生活化、场景化。还有保姆级的解题过程,每个步骤统统给你画出来, 让孩子看懂!每篇后还设计了拓展习题让孩子思考练习,附有详细答案。这套书不但能激发孩子对数学的兴趣,引导孩子一步步深入思考解题,还能让孩子学会举一反三,领略数学的美妙与乐趣,自然而然地建立起数学概念,培养逻辑
有限元语言是一种适用于有限元方法求解偏微分方程的模型语言。采用有限元语言编程就是书写偏微分方程和算法,然后由生成器产生FORTRAN语言的有限元程序。本书的主要内容包括:微分方程表达式,单物理场算法和多场耦合有限元算法的描述语言;元件化程序设计方法;有限元的数据结构;形函数库,微分算子库,单物理算法库等。
本书重点阐述四类算子的不动点或零点的迭代构造算法.这四类算子分别是非扩张算子、伪压缩算子、单调算子与增生算子。全书共分为四章:引言与基础知识;Hilbert空间中非扩张映像的不动点理论与迭代算法;伪压缩映像的不动点理论与迭代算法;Banach空间中非扩张映像的不动点理论与迭代算法。
《ANSYS Workbench 工程实例详解(CAE分析大系)》具体着眼于ANSYS 软件的使用和实际工程应用,结合有限元分析方法和具体的软件操作过程,从工程仿真分析实例出发,详细介绍了ANSYS15.0 Workbench 有限元分析软件的功能和处理各种问题的使用技巧。 为了方便读者理解并建立正确的有限元模型,书中提供了许多概念理解型案例,这些案例包含理论分析和有限元数值模拟的对比结果,同时书中也解析了常见的工程案例。书中内容主要涉及结构线性、非线性静力分析,也包含部分热分析、电场分析及热-结构耦合场分析,本书提供的每个分析案例包括工程问题的简化,分析模型的建立,施加边界条件及求解,结果的评定期待接近于工程实际。 《ANSYS Workbench 工程实例详解(CAE分析大系)》的目的是为初学者提供机械工程中的CAE 涉及的有限元方法的基础理论及实践知识,使读者
《解析数论研究》中作者采用正确的方法,解决了大整数表为两个平方与一个素数之和这个猜想,给出能表为两平方和的整数的分布渐近公式这一经典问题的带有O型余项的结果,并对相邻素数差问题、奇数Goldbach猜想、三维除数问题等问题进行重新处理(以前一些处理有问题),给出适当的结果。《解析数论研究》适合从事解析数论研究的专家学者阅读。
丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《 丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。