本书以通俗易懂的方式系统地介绍和阐述结构方程模型 (SEM) 的基本概念和统计原理,侧重结构方程模型的实际运用,介绍和示范各种常用结构方程模型,以及许多新近发展的模型,包括带分类条目的验证性因子分析 (CFA) 模型、双因子CFA模型、贝叶斯CFA 模型、缺失值多重插补 (MI)、潜变量合理值的估计和应用、调节中介效应模型、贝叶斯路径分析模型、带个体差异观察时间的潜发展模型 (LGM)、检验带分类变量的量表的测量不变性、纵向潜类别分析 (LLCA)、潜转换分析 (LTA)、带协变量和远端结局变量的潜发展混合模型 (GMM)、手动实施 BCH 方法和三步法混合模型建模、各种结构方程模型的蒙特卡罗模拟功效分析以及潜类别分析 (LCA) 模型的样本量估计。 本书采用国际著名 SEM 软件Mplus估计所有模型,使用真实数据演示各种模型估计,详细解读程序代码及输出结果。本书提供
本书围绕数据模型及计算主线,按共性算法案例、数据工程领域中数据计算案例展开.第1章(概述篇)概述了数据建模与计算的思想与方法,提出了数据建模的多模型融合思想和数据计算的多算法集成策略,让模型和算法点亮数据的光芒.第2章到第6章(共性算法篇)例举了若干共性数据计算方法,包括几何模型重建、图像处理中的优化算法、数值微分算法、主成分分析方法与改进、数据拟合的梯度型优化算法.第7章到第17章(数据建模与计算篇)围绕统计生成性模型与数据机理模型融合、多算法集成创新主线,例举了十一个数据工程领域数据建模与计算的案例,涉及医学、金融、量化投资、图像处理、智能决策、音乐流派分类、疫情数据分析、功能服装设计、海洋数据分析等领域的数据分析及应用.后记概括了本书的主要特点和核心内容,强调了数据模型融合和算法集成是上策,对未来进
差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
非线性规划问题在经济和工程等领域中普遍存 在,具有广泛的应用价值。随着社会的发展,非线 性规划问题的规模和结果也越来越复杂,要获得相 应问题的 解也变得越来越困难。 化方法是 解决这些问题强有力的工具,人们提出了许多求解 非线性规划问题的 化方法。这些方法在机理上 大致可以分为确定性 化方法和随机性 化方 法两类,这两种方法各有千秋。 本书介绍几个求解非线性规划问题的确定性 优化方法和随机性 化方法。全书内容共10章, 分为PARTⅠ和PARTⅡ两部分。PARTⅠ针对比式和规 划、多乘积规划、几何规划等工程上出现的 化 问题,提出了几个有效的分支定界算法,并证明了 算法的收敛性,该部分属于确定性 化方法。 PARTⅡ针对群智能 化方法中的萤火虫算法及粒 子群算法的改进做了研究,探讨了收敛性等相关问 题,该部分属于随机性 化
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
《广义逆的理论与计算》研究了广义逆的新理论和计算方法,主要包括加权M-P广义逆,加权DRAZIN逆和核逆的扰动理论及广义逆的神经网络算法,其中介绍广义逆的神经网络算法的专著在国内比较少。 《广义逆的理论与计算》适合计算数学、应用数学的研究生和科研工作者参考阅读。
《并行计算》是分布式并行计算的算法设计和消息传递并行编程的入门教程。《并行计算》详细介绍了包括MPI基础知识、求解线性代数方程组的共轭梯度法的并行算法实现、并行程序的效率和可扩展性、进程组和通信器操作、求解三对角线性代数方程组的追赶法、求解偏微分方程的算法并行化方法等相关内容;还分析了并行程序可扩展性差的主要原因,为读者提供了全面的并行计算知识体系和解决方案。《并行计算》提供了典型科学计算问题的并行算法与程序设计实例,并介绍了国际上流行的科学计算软件、工具及平台。内容从简到繁、循序渐进,可帮助读者逐步掌握并行计算技能,解决学习和工作中的问题。
《稳态Navier-Stokes方程的Liouville定理》介绍了Navier-Stokes方程,特别是定常Navier-Stokes方程的基础知识和**技巧,重点讨论了Liouville定理与定常Navier-Stokes方程解的分类问题。第1章将回顾一些基本的工具和技术,包括Stokes方程的基本解、Stokes估计、Bogovskii映射等;第2章对于三维稳态Navier-Stokes方程,将描述一些主要的进展,包括一些取决于速度、总压力或势函数的Liouville唯一性结果;第3章将从Navier-Stokes方程的衰减估计来研究;第4章将介绍一些二维Navier-Stokes方程的进展,包括Liouville定理、解的衰减或分类估计;*后,第5章将从不同区域或其他模型来讨论Liouville定理的一些进展。
Maple是目前应用非常广泛的符号计算软件之一,它拥有非常强大的符号计算和数值计算功能。本书详细地介绍了Maple的基本功能,包括:数值计算、解方程、微积分计算、向量及矩阵计算、解常微分方程和偏微分方程等,本书深入讲解了Maple编程的基本原理。
支持向量机的研究是近十余年机器学习、模式识别和数据挖掘领域中的研究热点,受到了计算数学、统计、计算机、自动化和电信等有关学科研究者的广泛关注,取得了丰硕的理论成果,并被广泛地应用于文本分类、图像处理、语音识别、时间序列预测和函数估计等领域,本书首先介绍了核函数的概念;然后从几何直观的角度介绍了建立二分类模型和回归模型过程中所取得的理论成果;*后对于分解算法、*小二乘支持向量机、多分类、模糊支持向量机、在线学习和大规模分类相关的优秀成果进行了归纳和整理,从数学上对相关算法的原理进行了详细分析。本书的内容既包括支持向量机的**进展,也包括作者的多年研究成果。作者希望本书能够有助于对机器学习、模式识别和数据挖掘感兴趣的读者更加快速地了解支持向量机的**研究动态,能够有助于读者理清算法的本
\\\\\\\"本书将从强化学习 基本的概念开始介绍,将介绍基础的分析工具包括贝尔曼公式和贝尔曼 公式,之后会推广到基于模型的和无模型的强化学习算法, 会推广到基于函数逼近的强化学习方法。本书强调从数学的角度接引入概念、分析问题、分析算法。并不强调算法的编程实现,因为目前已经有很多这方面的书籍,本书将不再重复造轮子。 本书面向对强化学习感兴趣的本科生、研究生、研究人员和企业研究所从业者。 它不需要读者有任何关于强化学习的背景,因为它会从 基本的概念开始介绍。如果读者已经有一些 强化学习的背景,这本书也可以帮助他们 深入地理解一些问题或者带来新的视角。 本书要求读者具备一定的概率论和线性代数知识。本书的附录中包含了一些必需的数学基础知识。\\\\\\\"
由科恩著的《计算代数数论教程(英文版)》介绍了148种算法,它们是数论计算的基础,其中包括与数论、椭圆曲线、素性测定和因式分解等相关的计算。 书中对每种算法都作了完整的理论介绍,将学习者需要的理论基础降到 。书中对每个算法的详细描述实现了其直接在计算机上的运行,并且给出了众多的进一步的执行提示。书中的许多算法在别的书上从来没有被看到过,或者说它们 次以书的形式出现在我们面前。
《互联网大厂 算法实战》介绍了互联网大厂当前采用的一些前沿 算法,并梳理了这些算法背后的思想脉络与技术框架。 《互联网大厂 算法实战》总计10章,内容涵盖了推荐系统的基础知识、 系统中的特征工程、 系统中的Embedding、 系统的各组成模块(包括召回、粗排、精排与重排)所使用的算法技术、 算法实践中经常会遇到的难题以及应对之道(其中涉及多任务 、多场景 、新用户冷启动、新物料冷启动、评估模型效果、定位并解决问题等), 还用一章的篇幅介绍了推荐算法工程师在工作、学习、面试时应该采取的做法。 《互联网大厂 算法实战》既适合 系统、计算广告、个性化搜索领域的从业人员阅读,也适合希望从事互联网算法工作的在校学生阅读。
互补约束优化是一类带均衡约束的数学规划问题, 在工程设计、交通网络、通信网络、**控制、经济等领域有广泛的应用. 本书主要介绍互补约束优化的理论和算法, 内容包括互补约束优化的应用背景及其约束规格和**性条件、线性互补约束优化的快速算法、非线性互补约束优化的光滑化算法、非线性互补约束优化的松弛方法等.