《矩阵之美(算法篇)》对多种**矩阵算法进行了新颖、全面且深入的解读。具体而言,第1章从代数、几何、分析和概率等多个角度详细介绍了*小二乘法;第2章对主成分分析进行了深入解析,涵盖代数、几何、子空间逼近与概率视角;第3章探讨了一种新兴的非对称数据分析方法 主偏度分析,并深入剖析了其性质和理论内涵;第4章介绍了典型相关分析及其关键性质,并从几何角度对其本质进行了进一步的阐释;第5章聚焦于非负矩阵分解,探讨了其与混合像元分析、奇异值分解、聚类分析及KKT条件的关联;第6章重点介绍局部线性嵌入,并将其与其他典型非线性特征提取方法进行了系统比较;第7章深入介绍**的傅里叶变换,并从矩阵角度对其内涵进行了新的诠释;第8章介绍了一种新颖的一阶统计分析方法 连通中心演化,重点阐明其在数据中心识别方面的优势和潜
《分数阶积分和导数:理论与应用》是Stefan G.Samko,Anatoly A.Kilbas,Oleg I.Marichev所著英文专著Fractional Integrals and Derivatives:Theory and Applications的中文翻译版本。《分数阶积分和导数:理论与应用》阐述了几乎所有已知的分数阶积分-微分形式,并对它们进行了相互比较,强调了一个函数能否被另一个函数分数阶积分表出的问题,突出了已知函数的分数阶积分可表示性问题比它的分数阶导数存在性问题更为重要,揭示了在某种意义下,函数分数阶导数的存在性等价于其分数阶积分的可表示性,同时给出了分数阶积分-微分在积分方程和微分方程中的大量应用。此外,应原著作者要求,《分数阶积分和导数:理论与应用》增加了一个附录,介绍了第三作者及其合作者开发的分数阶微积分的计算机代数系统。
计算,实际上是解决问题的过程。人们希望用计算机能找到解决一切问题的方法,因此在计算领域建立了算法理论和算法模型,并根据各种问题提出具体算法。而计算的复杂性是现代数学中最令人着迷的领域之一。本书通过几个经典的计算问题:哥尼斯堡七桥问题、汉密尔顿路径问题、整数分解和国际象棋问题,浅探计算的魅力。
《凸优化的分裂收缩算法》以简明统一的方式介绍了用于求解线性约束凸优化问题的分裂收缩算法。我们以变分不等式(VI)和邻近点算法(PPA)为基本工具,构建了求解线性约束凸优化问题的分裂收缩算法统一框架。在该框架中,所有迭代算法的基本步骤包括预测和校正,分裂是指通过求解(往往有闭式解的)的凸优化子问题来实现迭代的预测;收缩指通过校正生成的新迭代点在某种矩阵范数意义下更加接近解集。统一框架既涵盖了**意义下的PPA算法、用于求解线性约束凸优化问题的增广拉格朗日乘子法(ALM)和处理两个可分离块凸优化问题的乘子交替方向法(ADMM)等耳熟能详的算法,还为多块可分离凸优化问题的求解提供了多种方法。通过掌握这一并不复杂的统一框架,者可以根据可分离凸优化问题的具体特点,自行设计预测-校正方法求解。
本书是关于积分方程的高精度算法的*本书.全书分为五章:*章阐述积分方程与积分算子以及相关的泛函分析理论,方便读者无需特殊准备便可以通读本书;第二章阐述数值积分,重点介绍多维积分与反常积分的外推和分裂外推方法,其中关于带参数的超奇积分的数值方法与外推是首次见于专著;第三、四、五章分别阐述Volterra型积分方程、Fredholm型积分方程和边界积分方程的高精度算法.本书取材新颖,与同类书的内容不雷同,所提供的算法具有计算复杂度低、精度高、并行度高和拥有后验误差估计等特点,适合从事积分方程和边界元计算的科研工作者和工程计算人员参考,也适合计算数学和应用数学的博士生、硕士生和本科高年级学生作为专业或参考教材.
本书主要继承了作者本人的剑桥小册子The?Zeta—function?of?Riemann的内容.本书内容主要包括:ζ(s)函数,狄利克雷级数与ζ(s)函数的关系,ζ(s)函数的分析特点,函数方程,近似公式,ζ(s)函数在临界带的次序.
ThisbookaddressesrecentdevelopmentsinmathematicalanalysisandcomputationalmethodsforsolvingdirectandinverseproblemsforMaxwell sequationsinperiodicstructures.Thefundamentalimportanceofthefieldsisclear,sincetheyarerelatedtotechnologywithsignificantapplicationsinopticsandelectromagnetics.Thebookprovidesbothintroductorymaterialsandin-depthdiscussiontotheareasindiffractiveopticsthatofferrichandchallengingmathematicalproblems.Itisalsointendedtoconveyup-to-dateresultstostudentsandresearchersinappliedandcomputationalmathematics,andengineeringdisciplinesaswell.
无
本书系统地论述了有限元方法的数学基础理论。本书以椭圆偏微分方程的边值问题为例,介绍了协调有限元方法以及非协调等非标准有限元方法的数学描述、收敛条件和性质、有限元解的先验和后验误差估计以及有限元空间的基本性质,其中包括作者多年来的部分研究成果。
《边缘计算模式》共13章。第1章和第2章介绍边缘计算模式的相关概念和发展现状。第3~5章阐述边缘计算的新型框架,包括边缘联盟计算架构、混合边缘计算架构、移动节点辅助的边缘计算架构。第6~9章系统论述边缘存储理论与方法,包括边缘计算的数据协同存储和访问服务、数据缓存高效索引机制、跨层混合数据共享机制,以及安全可信的边缘存储架构。第10~13章系统论述边缘计算的任务调度理论方法,包括边缘计算的在线任务分派和调度方法、复杂依赖性应用分派和调度方法、服务链请求调度方法、服务增强模型。
差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从基本理论和
隧道力学概论简明扼要地阐述了隧道力学的基本理论.正文分八章,依次阐述:固体力学基础、隧道与围岩、深埋隧道弹黏塑性力学解析理论、浅埋隧道经验公式与解析理论、浅埋隧道环境力学解析理论、数值模拟、物理模拟、参数估计与不确定性分析.附录包含五个部分,分别阐述:弹性平面模型的复变函数解法、无限平面均匀应力场的弹性解、均匀初始应力场深埋圆截面隧道弹性解的复变函数法推导、深埋椭圆截面隧道的复势函数、无限长弹性地基梁的解析解
您最近查看的商品和相关推荐
本书主要继承了作者本人的剑桥小册子The?Zeta—function?of?Riemann的内容.本书内容主要包括:ζ(s)函数,狄利克雷级数与ζ(s)函数的关系,ζ(s)函数的分析特点,函数方程,近似公式,ζ(s)函数在临界带的次序.
丛书(第2辑):拉格朗日乘子定理》从一道2005年全国联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。
数学归纳法是一种数学证明方法,通常被用来证明给定命题在整个(或者局部)自然数范围内成立,《丛书(第六辑):数学归纳法》共分4章:数学归纳法,例题及习题,应用数学归纳法证明初等代数的一些定理,习题解答。《丛书(第六辑):数学归纳法》适合于初、师生,以及高等师范类数学教育专业的学生和数学爱好者参考阅读。
《守恒律方程的数值方法》总的重点放在研究必要的数学手段,用于发展、分析和成功地运用数值方法求解非线性守恒律,特别是包括激波的问题。首先,需要较好地理解这些方程及其解的数学结构,《守恒律方程的数值方法》的第壹部分处理这个理论问题。然后,第二部分更直接地处理数值方法,这一部分的重点也将放在具有广泛应用价值的通用技术上。我非常强调各类格式所用到的潜在思想,而不是极其详细地列出那些最复杂的格式。我的目的是提供足够的背景知识,使得学生可以基于这些必要的技术和理解去跟进目前的研究文献。
本书系统地介绍了计算几何中的基本概念、求解诸多问题的算法及复杂性分析,概括了求解几何问题所特有的许多思想方法、几何结构与数据结构。全书共分11章,包括:预备知识,几何查找(检索),多边形,凸壳及其应用,Voronoi图、三角剖分及其应用,交与并及其应用,多边形的获取及相关问题,几何体的划分与等分,路径与回路,几何拓扑网络设计,图形学习、推理及判定等。本书可作为高等院校计算机、自动化等专业研究生或本科高年级学生的教材或教学参考书,也可供软件开发人员、相关专业科技工作者参考。