三角恒等变形是中学数学的难点之一,《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析.内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应用以及代数对三角恒等变形的应用等。 《三角恒等式》精选例题、习题218则,习题还附有解法提示,可供中学师生、中学程度的自学青年作为学习三角恒等式的辅助读物。
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
《计算机数学基础 第3版》介绍线性代数和离散数学在计算机应用中所涉及的基本内容,全书共分6章,主要内容包括行列式、矩阵、线性方程组、集合论初步、图论和数理逻辑初步。书中概念论述清楚,讲解通俗易懂,着重于概念的应用。各章均配有习题并在附录中给出了习题参考答案,有助于读者加深对概念的理解。本书既可作为高职高专计算机专业课程的教材,也可供有关工程技术人员参考。
本书是《数值计算方法》的配套教材,内容包括数值计算引论、非线性方程的数值解法、线性代数方程组的数值解法、插值法、曲线拟合的*小二乘法、数值积分和数值微分、常微分方程初值问题的数值解法和试题及解答等8章。前7章每章均由内容提要、习题及解答、同步练习题及解答三部分组成,*后一章给出了3份试题样卷及解答。本书可作为高等学校理工科各专业本科生学习数值分析或计算方法的配套教材或参考书。
《 数学中的小问题大定理 丛书(第四辑):轨迹》主要讨论了点的轨迹的意义和探求轨迹的方法,包括综合法和解析法.在此基础上,还简要地介绍了动图形的轨迹和曲线族的包络的初步知识。 《 数学中的小问题大定理 丛书(第四辑):轨迹》可供中学数学教师参考,也可供中学生课外阅读。
本书根据普通高等理工科院校 计算方法 和 数值分析 课程的教学大纲编写而成,重点介绍计算机上常用的典型计算方法和基本理论。主要内容包括数值计算中的误差分析、线性方程组与非线性方程组的解法、矩阵特征值与特征向量的计算、非线性方程求根的方法、数值逼近的插值法与数据拟合法、数值积分与数值微分、常微分方程初值问题的数值解法等。书中内容力求精炼充实、由浅入深,从典型算法与实际问题着手,循序渐进,简洁易懂,便于教学与自学。每章都有较明确简洁的算法与实例,着重训练读者的计算能力,培养读者解决实际问题的方法和创新能力。每章后还配有适量的习题,便于读者掌握和巩固重点内容、算法与基本思想。
本书对于数值计算方法主要方法和原理进行了讨论,主要致力于对数值计算方法的基本思想、理论推导、方法论述、应用分析等深入而详细的探讨。 本书主要内容包括代数插值、样条插值、*逼近、二元函数插值与逼近、数值积分和数值微分、常微分程数值解法、微分方程边值问题数值解法等。
谢冬秀、左军编著的《数值计算方法与实验(十二五普通高等教育规划教材)》比较全面地介绍了科学与工程计算中常用的数值计算方法,具体介绍了这些计算方法的数学原理与算法及其实现,同时对这些数值计算方法的计算效果、稳定性、收敛效果、适用范围以及优劣性与特点也作了简要的分析。全书共8章,内容包括误差分析、非线性方程求根、线性方程组的直接求解和迭代求解、函数的数值逼近 (代数插值与函数的*逼近)、数值积分与数值微分、矩阵特征值与特征向量的计算、常微分方程初值问题的数值解法等。 本书概念清晰,语言通俗易懂,理论分析严谨,结构编排由浅入深.各章附有一定数量的习题,供读者练习使用,书后附有习题答案与提示。 本书可作为高等院校信息与计算科学专业、数学与应用数学专业、计算机专业、通信工程专业等理工科
《 数学中的小问题大定理 丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《 数学中的小问题大定理 丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。
《Voronoi图及其应用》在介绍Voronoi图相关概念和性质的基础上,侧重介绍Voronoi图的构造和应用方面的算法。本书主要内容包括离散点集的Voronoi图与Delaunay三角部分、多边形的Voronoi图、约束Delaunay三角部分以及重心Voronoi图的基本概念、性质、构造算法,及其在多边形剖分、几何搜索、多边形求交、可见性计算、路径规划、碰撞检测、骨架计算、文字特征提取、半色调图像生成以及信息可视化等方面的应用。 《Voronoi图及其应用》可以供从事相关研究的高校教师、科研人员参考,也可作为高等院校计算机相关专业研究生的教材和参考书。本书由杨承磊、吕琳、杨义军以及孟祥旭合著而成。
本教材主要是针对全国工程硕士专业学位研究生“数值分析”或“数值计算”课程的教学而编写的,特别针对各工程领域实际应用的特点,确定了教材的基本内容,其主导思想是: “了解背景、掌握概念、注重原理、淡化推导、强调实现、突出应用.”这也是该教材的主要特点,即介绍问题的工程背景,讲解基本概念和数学原理,介绍一般的数学理论和算法,淡化理论推导和纯粹的计算,重点讲授应用方法,借助于计算机和工具软实现算法,特别突出解决实际工程问题的实用性. 本书可作为相关各工程领域的工程硕士专业学位研究生“数值分析”或“数值计算”课程的教材,也可作为工科各专业的大学本科生和研究生的“数值分析”或“数值计算”课程教材或参考教材,也可供从事相关研究工作的工程技术人员参考之用.
面对尚未先修结构力学、弹性力学、计算方法的本科生,如何讲好这门课程,让学生不要望而却步,作者在教学中尽量从材料力学等基本知识入手,深入浅出,让学生抓住有限元方法的本质。 为了不让学生对有限元浅尝辄止,在《有限元方法及其工程案例》编写中,作者陈雪峰、李兵、曹宏瑞结合多年的有限元教学经验和工程实践,撰写了几个典型工程案例,期望在教学中结合工程案例,让学生身临其境、学用结合;同时,结合作者主持的国家杰出青年科学基金等项目,撰写了一章新型有限元方法,让学生开阔思路、学以创新。
《数值计算方法与算法(第三版)》介绍常用的数值计算方法,内容包括:函数插值、*小二乘拟合、非线性方程求解、线性方程组解法、数值积分和微分、常微分方程数值解法、矩阵的特征值问题等。《数值计算方法与算法(第三版)》例题丰富, 形式多样, 并有C语言和Mathematica语言的例题和习题。
本书收集了2022年至2023年度中国数学奥林匹克的试题,并对试题作详细地分析、解答与评点。 试题包括:全国高中数学联赛、全国中学生数学冬令营、女子数学奥林匹克、东南地区数学奥林匹克、 集训队测试、美国数学奥林匹克、俄罗斯数学奥林匹克以及 数学奥林匹克。 本书倾注了许多专家和学者的心血,书中有很多他们的创造性的工作。本书可供数学爱好者、参加数学竞赛的广大中学生、从事数学竞赛教学的教练员、开设数学选修课的教师参考。
《数值分析原理》系统地介绍了现代科学与工程计算中常用的数值计算方法及有关的理论和应用。全书共分9章,包括误差分析,函数插值,函数逼近,数值积分与数值微分、线性方程组的直接解法和迭代解法,非线性方程的数值解法,矩阵特征值与特征向量的计算,以及常微分方程初值问题的数值解法等。《数值分析原理》基本概念清晰准确,理论分析科学严谨,语言叙述通俗易懂,结构编排由浅入深,注重启发性。《数值分析原理》始终贯穿一个基本理念,即在数学理论上等价的方法在实际数值计算时往往是不等效的,因此,《数值分析原理》精选了大量的计算实例,用来说明各种数值方法的优劣与特点。各章末还有一定数量的习题供读者练习之用。 读者对象:高等院校工科研究生和数学系各专业本科生,从事科学与工程计算的科研工作者。
本书涵盖了数学建模初步、差分方程、插值与数值积分、常微分方程、线性代数方程组、非线性方程与方程组、无约束优化、约束优化、整数规划、数据统计分析、统计推断、回归分析等基本而重要的建模门类。各章的前部,是数学软件MATLAB/LINDO/LINGO的常用基本命令的演示,后部则是一些典型的建模案例,每个实验又区分难易,较简单的实验,以程序为单一主体;较复杂的,则设置模型问题、建模求解、程序设计、结果说明等段落,清晰演示一个数学模型从问题提出、模型假设到建模求解、编程实现的全过程,使得学生对基本命令有例可查,对典型方法有法可依。本书适合大学理工、人文、经管、医学、农学等各院系各专业的师生阅读和练习,只需具备若干基本的微积分、线性代数、概率统计、很优化的常识,以及推荐的安装有MATLAB/LINDO/LINGO等数学
本书叙述了与计算机科学有紧密联系并且相互之间又有联系的数理逻辑基础性内容,包括经典逻辑和非经典逻辑中的构造性逻辑和模态逻辑。本书在选材时考虑了逻辑系统的特征,并且适应计算机科学的要求。本书研究各种逻辑的背景、语言、语义、形式推演,以及可靠性和完备性等问题。本书大部分章节附有习题。
三角等式证题法》以统编教学大纲为基础,以三角恒等式证明为例,比较深入细致讨论了解题的正确思路、方法及技巧。《三角等式证题法》对三角计算题的解法也进行了深入分析,指出了正确的解题思路。《三角等式证题法》适用中学生、知识青年自学,也可供中学数学教师参阅。
本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
郭坤宇编著的《算子理论基础》前3章概述线性泛函分析的基本内容。第四、第五章建立在前3章的基础上,重点讲述算子理论、算子代数的一些基本概念、理论和方法。在第六章,我们综合运用前5章的知识研究3类具体的算子——Toeplitz算子、Hankel 算子和复合算子,这3类算子具有广泛的应用价值。 书中列举了大量的应用实例,并配备了一定数量的习题。 本书内容精炼,叙述简明扼要,可作为数学院系高年级学生和研究生的教学用书或教学参考书,特别可用于算子理论与算子代数方向研究生的入门用书。