差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书系统地介绍模拟退火算法以及这一方法的并行实现和在优化、搜索、机器学习、统计物理中的应用。主要内容包括:模拟退火算法、并行摸拟退火算法、渐近收敛性、冷却进度表、模拟退火算法的应用、改进和变异、Boltzmann机及其存组合优化中的应用。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
有限元结构分析在大型工程计算中至今仍居重要地位。本书系统地论述了有限元方程组形成和求解的各个步骤的并行计算格式和并行程序设计技巧,着重介绍了有限元分析的并行计算、大型稀疏有限元方程组直接解法的并行处理、大型稀疏线性方程组预处理共轭梯度法的并行处理、矩阵向量积的并行计算,还概括了近年来有关研究的主要成果,是一部具有较高理论水平和实用价值的著作。
本书详细介绍了常用的数值计算方法,分上、下两册。上册包括误差分析初步,函数插值逼近,数值积分,解非线性方程的数值方法,解线性方程组的直接方法。下册包括解线性方程组的迭代法,线性*小二乘问题,数据拟合,矩阵特征值问题,解非线性方程组的数值方法,常微分方程初值问题和边值问题的数值解法,函数逼近等。本书内容丰富,并且绝大多数算法用伪程序给出,强调数值方法在计算机上的实现。
王自强、曹俊英编写的《统计计算及其程序实现》以统计理论、数值分析、*优化理论与算法为基础,以MATLAB软件及R软件为平台,并把统计理论、数值分析、*优化理论与算法和计算机实现有机地结合起来,让读者理解和掌握统计方法解决实际问题的全过程。本书的主要内容有:基本的数值计算方法、* 优化算法、统计计算数值方法和多元统计方法,其中包括线性方程组的数值解法、非线性方程的数值解法、数值积分、线性规划问题的数值计算、非线性优化的数值计算、多元相关与回归分析、方差分析、线性与非线性模型及应用多元分析。 本书可以作为理工、经济、管理、统计等专业的高年级本科生和研究生的数理统计、*优化方法和数值分析的辅导教材或教学参考书,也可以作为统计计算课程的教材。
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及逻辑和证明,集合、函数、序列、求和与矩阵,计数,关系,图,树,布尔代数。全书取材广泛,除包括定义、定理的严格陈述外,还配备大量的实例和图表说明、各种练习和题目。第7版在前六版的基础上做了大量的改进,使其成为更有效的教学工具。本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
《数值计算方法(第2版)》介绍了数值计算方法.内容涉及数值计算方法的数学基础,数值计算方法在工程、科学和数学问题中的应用以及MATLAB程序,涵盖了经典数值分析的全部内容:包括非线性方程的数值解法:线性方程组的数值解法;矩阵特征值与特征向量的数值算法;插值方法;函数*逼近;数值积分;数值微分;常微分方程数值解法等.基于MATLAB是本书的特色,对书中所有的数值方法都给出了MATLAB程序,有大量翔实的应用实例可供参考,有相当数量的习题可供练习, 《数值计算方法(第2版)》可作为理工科本科生、研究生数值计算方法课程教材或参考书,也可作为科技人员使用数值计算方法和MATLAB的参考手册。
**化是运筹学的一个重要分支,在很多领域具有广泛的应用.本书系统地介绍了线性规划、无约束优化及约束优化的基础理论和求解方法,主要内容包括:线性规划的对偶理论与**性条件、无约束优化的**性条件、约束优化的**性条件与鞍点定理;求解线性规划的单纯形算法、内点算法、非内部连续化算法;求解无约束优化的*速下降法、牛顿法、共轭梯度法、拟牛顿法、非单调线搜索法、信赖域法;求解约束优化的序列无约束优化法、可行方向法、序列二次规划法等,也简单介绍了多目标规划的基本理论与求解方法.
《线性方程组的高效迭代算法》共分六章.章是绪论,主要概述研究问题,研究动机,研究背景,研究方法以及创新点.第二章对实际问题提出H一矩阵松弛型矩阵多分裂迭代法和H一矩阵松弛型非定常矩阵多分裂多参数迭代法,分析方法的收敛性条件,比较多分裂迭代法之间的敛散速度,并用Matlab语言和MPI并行语言验证了算法的有效性.第三章进一步研究一些H一矩阵松弛型矩阵多分裂法新的收敛性结果,分别研究非线性方程组的非定常矩阵多分裂法,线性互补问题的矩阵多分裂法,松弛型矩阵多分裂SSOR法和松弛型矩阵多分裂TOR法,得到新的更弱的收敛性结果,并进行了数值试验的比较.第四章设一计求解非对称线性方程组krylov子空间的平方共扼残差(CRS)算法和适合分布式并行计算改进的平方共扼残差(ICRS)算法,并对两种方法进行了理论分析和算法比较,后数值试验表明所提方法较好的收
大数因子分解是国际数学界几百年来尚未解决的难题,也是现代密码学中公开密钥RSA算法密码体制建立的基础。《大数因子分解的合数模式特性》从RSA算法存在的不动点中发现了素数因子的分布与特性以及它们之间的连接机制,据此将大数因子分解问题转化为在两个含有素数因子的数之间求公因子问题,将困难的大数因子分解问题转化为一系列算法的初等数学问题,这无疑是研究大数因子分解的重要成果与进展。 《大数因子分解的合数模式特性》介绍的数学研究方法采用计算机作为实验工具,对从事大数因子分解问题研究具有重要学术价值,其成果对于数学家与计算机科学家有重要的理论价值和应用价值。《大数因子分解的合数模式特性》可作为高等学校数学专业﹑计算机专业的本科生和研究生的教材,也可作为广大科学研究人员,特别是从事现代密码分析与信
《解析数论研究》中作者采用正确的方法,解决了大整数表为两个平方与一个素数之和这个著名猜想,给出能表为两平方和的整数的分布渐近公式这一经典问题的带有O型余项的结果,并对相邻素数差问题、奇数Goldbach猜想、三维除数问题等著名问题进行重新处理(以前一些处理有问题),给出适当的结果。《解析数论研究》适合从事解析数论研究的专家学者阅读。
本书通过几类重要并具有代表性的发展方程,介绍求发展方程数值解的原理和计算方法,包括将发展方程定解问题离散化的途径、方法,计算格式的设计和求解算法,以及关于数值方法的理论分析。
Navier-Stokes方程是流体的经典方程。在本书中,我们将从线性的Stokes问题入手,研究如何利用协调有限元方法、有限体积方法以及非协调有限元方法高效求解。然后在强**解情况和非奇异解束两个层面研究定常Navier-Stokes方程理论和高效计算方法,同时介绍求解定常Navier-Stokes方程的三种迭代方法和针对较大雷诺数问题的Euler时空迭代方法。后研究了非定常Navier-Stokes方程的有限元离散方法以及高效全离散方法。
云计算正在成为一种通用的计算技术,它将深刻地改变地球科学应用的传统方法和模式,解决21世纪地球科学面临的诸多挑战。本书通过17个章节及实例,从5个方面为读者介绍了全面的空间云计算知识,包括:(1)云计算的基本概念和为什么地球科学需要云计算?(2)如何将简单的地球科学应用迁移到云计算?(3)如何使云计算支撑复杂的地球科学应用?(4)如何测试一个云服务是否已准备好支撑地球科学应用?(5)什么是需要进一步研究的问题和需求?本书可为读者提供系统的空间云计算知识,指导读者了解空间云计算,应用空间云计算,进一步研究空间云计算。
本书共四章,包括解析平面几何证明题,解析平面几何中除证明题以外的其他问题,解立体几何,解解析几何,后又提供了8个附录,以丰富本书内容。
本书讨论处理无约束**化问题的数值方法,主要包括Newton法。共轭梯度法、拟Newton法、Powell直接方法以及非线性小二乘法,并且阐明了其理论、应用和发展动向。
本书是作者在多年为理工科硕士研究生讲授计算方法课程的基础上编写而成的。全书共分11章,内容包括:计算方法概论,数值计算理论基础,非线性方程求根,线性与非线性方程组的数值解法,矩阵特征值与特征向量的计算,插值与逼近,数值积分与微分,常微分方程初值问题与边值问题的数值解法。本书选编了较多不同层次的例题和习题供教师选择,并在各章引人数学软件Matlab的应用实例,以提高学生的学习兴趣和应用能力。对某些较深入的内容,本书以附录形式放在相应章节的后面,教师可以根据学时选讲或不讲,不影响整个体系。本书内容丰富,阐述简明易懂,注重理论联系实际。可作为理工科大学非计算数学专业的研究生或高年级本科生的教材(适合36-64学时),也可作为科技工作者的参考书。
本书论述了解非线性方程组的基本理论和方法,着重介绍:Newton法、单纯形算法、同伦延招法、区间迭代法,以及计算机数学库中常用的新算法,还介绍了方法的收敛性定理和方程解的存在**位,并且给出了有实际应用价值的、效果好的算法步骤和数值例题。