差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
支持向量机的研究是近十余年机器学习、模式识别和数据挖掘领域中的研究热点,受到了计算数学、统计、计算机、自动化和电信等有关学科研究者的广泛关注,取得了丰硕的理论成果,并被广泛地应用于文本分类、图像处理、语音识别、时间序列预测和函数估计等领域,本书首先介绍了核函数的概念;然后从几何直观的角度介绍了建立二分类模型和回归模型过程中所取得的理论成果;*后对于分解算法、*小二乘支持向量机、多分类、模糊支持向量机、在线学习和大规模分类相关的优秀成果进行了归纳和整理,从数学上对相关算法的原理进行了详细分析。本书的内容既包括支持向量机的**进展,也包括作者的多年研究成果。作者希望本书能够有助于对机器学习、模式识别和数据挖掘感兴趣的读者更加快速地了解支持向量机的**研究动态,能够有助于读者理清算法的本
Maple是目前应用非常广泛的符号计算软件之一,它拥有非常强大的符号计算和数值计算功能。本书详细地介绍了Maple的基本功能,包括:数值计算、解方程、微积分计算、向量及矩阵计算、解常微分方程和偏微分方程等,本书深入讲解了Maple编程的基本原理。
有限元语言是一种适用于有限元方法求解偏微分方程的模型语言。采用有限元语言编程就是书写偏微分方程和算法,然后由生成器产生全部FORTRAN语言的有限元程序。本书的主要内容包括:微分方程表达式,单物理场算法和多场耦合有限元算法的描述语言;元件化程序设计方法;有限元的数据结构;形函数库,微分算子库,单物理算法库等。
《*化方法应用分析》系统讲述如何使用*化科学来解决实际问题并创造*化价值。精心选取了石油、化工、机械、冶金、能源、电力电子、航空航天、运输、通信、计算、网络、农业、生物、医药、经济、管理等领域的七十多个应用实例,系统阐述了*化方法在各行各业的广泛应用。详细给出了实际优化问题,从优化模型的建立到优化模型的求解计算,一直到优化结果的分析与比较的全过程,通俗易懂,使读者近距离全面了解优化技术是如何解决实际问题的。 《*化方法应用分析》可作为高等院校自动化、控制、系统工程、工业工程、计算机、应用数学、经济、管理、化工、材料、机械、能源等相关专业的教材,也可作为有关研究人员和工程技术人员的参考书。
本书系统介绍ZI数据和相关ZI模型的统计推断原理、方法和应用。内容主要包括:ZI模型参数的极大似然估计、Bayes估计、基于经典方法的影响诊断、基于K-L距离的Bayes影响诊断、ZI参数和散度参数的假设检验,ZI随机效应模型参数的极大似然和Bayes估计、基于经典方法的影响诊断、基于K-L距离的Bayes影响诊断、回归系数和散度参数的假设检验、方差成分检验,ZI模型及相应的随机效应模型中与均值函数有关的协变量函数形式和联系函数形式的误判检验等。
This book grows out of the lectures the first author gave in the summer of 2002 in the Institute of Computational Mathematics of Chinese Academy of Sciences.The purpose of the lectures was to present a concise introduction to the basic ideas and mathematical tools in the construction and analysis of finite element methods for solving partial differential equations So that the students can start to do research on the theory and applications of the finite element method after the summer course.Some of the materials of the book have been taught several times by the authors in Nanjing University and Peking University.The current form of the book is based on the lecture notes which are constantly updated and expanded reflecting the newest development of the topics through the years.
本书对近年来认知计算和多目标优化领域常见的理论及技术进行了较为全面的阐述和总结,并结合作者多年的研究成果,对相关理论及技术在应用领域的实践情况进行了展示和报告。全书从认知计算和多目标优化两个方面展开,主要内容包含以下几个方面:认知科学及其特点,多目标优化问题及其求解方法,高效免疫多目标SAR图像自动分割算法,基于智能计算的认知无线网络频谱分配与频谱决策方法。
本书针对各类具有多尺度特性的问题给出简化数学处理方法(平均化和均匀化),该方法可用于求解偏微分方程、随机微分方程、常微分方程以及Markov链。《BR》 全书共分三部分,*部分为背景资料;第二部分为扰动展开,给出此类问题的共性;第三部分阐述了一些证明扰动方法的理论。每章结束部分的讨论和文献目录中均对本章的一些结论进行了推广和扩展,并附上参考文献。除第1章外,所有章节均提供相应练习。
本书深入讨论Krylov子空间算法的核心思想和理论,结合算法的推导过程,介绍Krylov子空间算法和预处理技术的**进展,同时介绍Krylov子空间算法及预处理技术在电磁计算和数字图像处理中的应用.
本书系统地介绍了计算机中的无误差数值方法及其应用。前三章的内容包括:整数的准确运算、单模剩余算法、多模剩余算法、p-adic数系统和Hensel码运算法。第四章至第十一章内容包括:准确求解线性方程组、矩阵求逆、广义逆、*多项式运算、多项式矩阵、矩阵特征多项式、矩阵约当型、数论变换FNT、素数与素数识别、整数因子分解及信息安全与数字密码。
《离心叶轮内流数值计算基础》根据作者多年来在叶轮机械与流体力学相关领域的积累和研究成果提炼而成。主要内容包括流体基本属性、基本方程组的推导、网格生成的代数法与微分法、网格量的计算、模型方程的分类及求解特征、差分及其稳定性分析、有限体积法的基本原理、不可压缩N-S方程的离散计算、边界条件的实施、代数方程系统的迭代法、动-静子耦合流动模型与算法,以及并行编程基础等。《离心叶轮内流数值计算基础》注重理论体系的完整、系统和实用性,将抽象的理论与具体实例相结合、数理基础与当前热点相结合,强调研究思路与解决方法的贯通,既可作为教学用书,也可供科研参考。
本书以自封闭的形式系统介绍了线性不适定问题的正则化求解方法,以及在数学物理反问题研究中的一些应用。主要内容包括:不适定问题的基本概念和特点,研究不适定问题需要的基本数学工具和方法,求解不适定问题的标准的正则化方法及近年来的新发展,以及正则化方法在逆时热传导、数值微分、逆散射等领域中的应用。本书的内容包含了作者和其他学者近几年来的有关工作。
本书作者现任美国西北大学教授,多种国际权威杂志的主编、副主编。作者根据在教学、研究和咨询中的经验,写了这本适合学生和实际工作者的书。本书提供连续优化中大多数有效方法的全面的*的论述。每一章从基本概念开始,逐步阐述当前可用的*技术。 本书强调实用方法,包含大量图例和练习,适合广大读者阅读,可作为工程、运筹学、数学、计算机科学以及商务方面的研究生教材,也可作为该领域的科研人员和实际工作人员的手册。 总之,作者力求本书阅读性强,内容丰富,论述严谨,能揭示数值*化的美妙本质和实用价值。
《反问题的数值解法(典藏版)》系统介绍了数学物理反问题求解的正则化方法,主要包括适定与不适定问题的基本概念:反问题、不适定性及其与*类算子方程的联系,基于算子广义逆理论的各种推广,几种提高正则解精度和计算效率的迭代正则化方法、离散正则化方法,各种正则化算法的数值实现,带有工程、物理与经济应用背景有启发性的实例,在附录中给出了*近的国内外研究成果和示范性MALAB语言源程序。 《反问题的数值解法(典藏版)》适合于数学专业科研人员、大学教师使用,亦可供从事科学和工程领域中反问题数值计算方法研究的科研人员,高等院校的教师、研究生和高年级大学生参考。