为了解生物力学研究的基础与前沿发展趋势,交流研究成果,促进我国生物力学领域的青年学者成长,培养学科后备人才,由国家自然科学基金委员会数理科学部主办、上海交通大学承办的“生物力学高级讲习班”在上海举办。编者组织参与讲习班讲学的部分专家以讲习班的讲稿为基础撰写了这本专著。作者们结合自己多年研究实践,详细介绍了我国生物力学学科领域在心血管、骨关节、正畸、修复、康复工程、肿瘤以及眼科等方面的研究成果。这些生物力学的基础知识和前沿进展将对已从事或将要从事生物力学研究的年轻学者是极好的参考。
超短激光脉冲的出现及其所带来的特别条件的研究,逐渐形成了一门新兴学科-强场物理学。强场物理既包括激光源的研究,同时也包含相对论区和非相对论区激光与原子、分子、团簇、固体及等离子体等的相互作用的研究。对这些领域的研究给许多其他学科,如实验室天体物理、材料科学、等离子体物理、激光核聚变、原子物理、非线性光学、相对论物理、激光物理、加速器物理、高能物理及其它许多应用学科带来巨大冲击和机遇。这是一门内容很好丰富,同时在飞速发展的学科。但在所有这些相关的研究领域中,强场与原子、分子的相互作用是理解强场与物质作用的基础。
李毓佩先生的作品通过奇妙的构思,从生活中的若干问题出发,把数学概念、计算方法等知识很自然地穿插进来,不仅普及了数学知识,还普及了数学思想,以及追求数学的精神。李毓佩数学故事文笔生动,幽默风趣,特色鲜明,在“独此一家,别无分号”。
本书在把握从固体物理学到凝聚态物理学历史发展脉络的基础上,为凝聚态物理学建立了一个逻辑上合理明晰的概念体系,并对学科涵盖的丰富内容进行了全面系统的论述.全书除一章综览外,共有八编,计三十八章,分两卷出版.接上卷的前四编之后,下卷包括后四编.第五编为临界现象,从分析涨落和关联出发,论述了凝聚物质中由温度、几何参数、时间和非热物理量调控的各类临界现象,强调了标度理论和重正化群方法;第六编为元激发,首先给出了元激发的一般特征、分类原则和场论描述,然后分别论述了与原子位移有关的振动激发,与自旋进动联系的自旋激发,与电子相互作用关联的电子激发,以及来自不同类型激发之间耦合的耦合型激发;第七编为织构和拓扑缺陷,从广义弹性和流体动力学出发,论述了晶体、液晶、铁磁体和超导体中缺陷的拓扑和几何性质,结构和能量学,力学和物
冲击波物理是研究凝聚态物质,尤其是固态物质,在瞬态外力作用下的状态和性质变化规律的一门基础科学。目的是建立能够对物质受到高速碰撞和爆炸等特别外力作用时的动力学行为正确地进行预言、分析和评价的科学方法。众所周知,在第二次世界大战后,由于核武器研究的迫切需求,冲击波物理学科在苏联和美国等西方国家中得到了迅猛发展。到20世纪80年代初,国外就公布了金属、岩石、塑料、、无机化合物、有机化合物、液体和气体等许多物质的冲击绝热压缩数据,建立了比较完备的、描述这些物质受到冲击压缩的响应特性的数据库。随着冲击波物理研究领域的不断拓展、实验测量技术的不断进步和计算模拟能力的迅速提高,这些数据库一直在不断修订和扩充之中。
超短激光脉冲的出现及其所带来的特别条件的研究,逐渐形成了一门新兴学科-强场物理学。强场物理既包括激光源的研究,同时也包含相对论区和非相对论区激光与原子、分子、团簇、固体及等离子体等的相互作用的研究。对这些领域的研究给许多其他学科,如实验室天体物理、材料科学、等离子体物理、激光核聚变、原子物理、非线性光学、相对论物理、激光物理、加速器物理、高能物理及其它许多应用学科带来巨大冲击和机遇。这是一门内容很好丰富,同时在飞速发展的学科。但在所有这些相关的研究领域中,强场与原子、分子的相互作用是理解强场与物质作用的基础。
本书在把握从固体物理学到凝聚态物理学历史发展脉络的基础上,为凝聚态物理学建立了一个逻辑上合理明晰的概念体系,并对学科涵盖的丰富内容进行了全面系统的论述.全书除一章综览外,共有八编,计三十八章,分两卷出版.接上卷的前四编之后,下卷包括后四编.第五编为临界现象,从分析涨落和关联出发,论述了凝聚物质中由温度、几何参数、时间和非热物理量调控的各类临界现象,强调了标度理论和重正化群方法;第六编为元激发,首先给出了元激发的一般特征、分类原则和场论描述,然后分别论述了与原子位移有关的振动激发,与自旋进动联系的自旋激发,与电子相互作用关联的电子激发,以及来自不同类型激发之间耦合的耦合型激发;第七编为织构和拓扑缺陷,从广义弹性和流体动力学出发,论述了晶体、液晶、铁磁体和超导体中缺陷的拓扑和几何性质,结构和能量学,力学和物
超短激光脉冲的出现及其所带来的特别条件的研究,逐渐形成了一门新兴学科-强场物理学。强场物理既包括激光源的研究,同时也包含相对论区和非相对论区激光与原子、分子、团簇、固体及等离子体等的相互作用的研究。对这些领域的研究给许多其他学科,如实验室天体物理、材料科学、等离子体物理、激光核聚变、原子物理、非线性光学、相对论物理、激光物理、加速器物理、高能物理及其它许多应用学科带来巨大冲击和机遇。这是一门内容很好丰富,同时在飞速发展的学科。但在所有这些相关的研究领域中,强场与原子、分子的相互作用是理解强场与物质作用的基础。