本书涵盖了2016 2025年考研数学一、数学二、数学三的全部真题,精选了1987 2015年考研各卷种中有一定难度或代表性的真题,并配有详细解析,供考生进行练习.本书将真题按考点分类,每一节均分为十年真题、考点分析、知识梳理、方法探究、真题精选五个部分.不但梳理了《全国硕士研究生招生考试数学考试大纲》所要求的每一个知识点,而且通过例题详细讲解了主要的方法,并对每一节内容作了小结,归纳考研近年来的命题趋势,旨在使考生全面准确地了解考研数学。
内容介绍 八年前, 数学之美 系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了 数学之美 ,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚到余弦函数原来都如此亲切,并且栩栩如生,才发现自然语言和信息处理这么有趣。 在纸本书的创作中,作者几乎把所有文章都重写了一遍,为的是把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力。读者通过具体的例子学到的是思考问题的方式 如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。 本书*一版荣获国家图书馆第八届文津图书奖。*二版增加了针对大数据和机器学习的内容。第三版增加了三章新内容,分别介绍当今非常热门的三个主题:区
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
内容简介 眼睛是人们感知世界的窗口,被称为“心灵的窗户”。然而,眼睛却非常娇嫩,需要人们悉心呵护。 本书用形象的比喻、诙谐幽默的描述向读者传递眼睛的相关知识。首先,阐释了自然界中各种动物的奇特眼睛及真给人类带来的启迪,以唤起读者对眼睛的好奇和兴趣。其次,描述了人类眼睛鲜为人知的“奇闺趣视”,从科学的角度解释日常用眼过程中遇到的一些问题,进一步激发读者不断去探索眼睛的奥秘。再次,用深入浅出的方法,从专业角度介绍眼睛的结构、工作奥秘以及人类眼睛成长与衰老的过程。最后,介绍了眼睛常见疾病的陆治和相 目录 目录总序 / i前言 / iii章 探秘神奇的眼睛 / 001节 动物世界奇特的眼睛 / 002一、视力“动”“静”迥
本书以独特的视角呈现线性代数的全貌,*覆盖了线性空间与线性映射、矩阵与行列式、谱理论、欧几里得结构等核心理论,还单独讨论了向量值与矩阵值函数的微积分、动力学、凸集、赋范线性空间、自伴随矩阵的本征值计算等特色专题,理论和应用相结合。每章*有练习,并为部分练习提供解答。书后还有辛矩阵、快速傅里叶变换、洛伦兹群、若尔当标准形等16个附录。
本书是分析领域内的一部经典著作。主要内容包括:抽象积分、正博雷尔测度、LP-空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、*大模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、HP-空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式一致逼近等。另外,书中还附有大量设计巧妙的习题。本书体例优美,实用性很强,列举的实例简明精彩,基本上对所有给出的命题都进行了论证,适合作为高等院校数学专业高年级本科生和研究生的教材。
许多人认为,对于学习数学的学生来说,微积分是一门具有很大挑战性的科目。这本*图书将改变你对微积分的这种认识,帮助你轻松掌握微积分的基础知识。 本书*初由英国*学会会员、物理学家和科学史学家西尔维纳斯·菲利普斯·汤普森撰写,后来经过数次修订和完善,其中*近一次由美国*数学家、科普作家马丁·加德纳完成。作者采用通俗易懂的语言,生动形象地阐述了微积分的基本原理和实际意义,并通过丰富的实例介绍了微积分的基本计算方法和应用技巧。本书主要内容包括函数、极限和导数的概念,小量的比较,常量的处理,和、差、积、商的导数,高阶导数,导数的几何意义,极大值和极小值,曲线的曲率,部分分式和反函数,正弦函数和余弦函数的处理,偏导数.积分以及微分方程的求解等。 本书可作为高中生和大学生学习微积分的人门读物,也
本书将数学的统一性贯穿始终,将理论方法与经典例题相结合,以战略、战术及工具为主线,把解题提高到了艺术高度。首先教总结解决问题的方法论,这也是全书的核心内容,进而通过实例阐述了具体的解题战术,如抽屉原理等。并从解题者的角度分别讲述了代数学、组合数学、数论、几何和微积分。
本书是在作者编写的讲义基础上完成的,其中部分习题来自部分高校考研真题,所给出的解题方法具有典型意义,对考研复习具有较高的参考价值。其内容包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、欧式空间、双线性函数。每章由常用定理及结论、常见题型及解答两部分组成,常用定理及结论部分叙述了考研题解答很常用到的结论及相关定理,常见题型及解答部分给出了约600道常见考研题的解法,有的还给出了一题多解。本讲义在天水师范学院数学与应用数学专业“创新班”已连续使用了五年,效果很好。
本书将高等数学主要内容按问题分类,通过引例,归纳总结各类问题的解题规律、方法和技巧,其中不少是作者多年来积累的教学经验。读者阅读此书,必将增强分析问题、解决问题和应试的能力。本书实例多、类型广、梯度大。例题主要取材于两部分:一部分是“十二五”普通高等教育本科国家级规划教材《高等数学》(第七版)(同济大学数学系编,高等教育出版社出版)中的典型习题;另一部分是历届全国硕士研究生入学考试数学试题,其绝大部分都已收入。本书可供本(专)科学生学习高等数学参考;对于自学者和有志攻读硕士学位研究生的青年,本书更是良师益友;对于参加专升本、成人教育、自考的读者,也不失为一本有指导价值的很好的参考书;对于从事高等数学教学的教师,也有的参考价值。
本书按大纲常考知识点分为18讲,且全书内容均为张宇老师亲自独立编写完成,故书名称为《张宇高等数学18讲》。每一讲又分四个模块:考纲要求、内容精讲、例题精解和习题精练。考纲要求:编者将大纲对知识点的要求,以图表的形式,分数学一、数学二、数学三呈现给读者,更具针对性。考生可根据自己所考科目对号入座,首先做到将自己该了解、理解、会以及掌握哪些知识了然于胸。内容精讲:编者以轻松且类似于“面对面讲课”的语言形式精讲知识点,给读者虽在看书,但仿佛在听讲课般的非一般的感受。例题精解:例题选取均是作者从众多经典题目中认真筛选出来的,可谓经典中的经典。每道题目均具代表性,绝不是大量题目的简单堆砌。习题精练:习题的选择更具考查目的,均尽力模拟真题的形式来设置题目,且配有详尽的解析,真正具有锻炼价值。
《考研数学三部曲之大话线性代数》是一本独特的线性代数参考书,以“盖楼”为目标轻松构筑整个线性代数体系。读者每阅读完一章,就是盖完了大楼的一层,而每层中又分为“砖”和“房间”两部分,先运来“砖”再搭建“房间”,这种安排内容的方式使得全书充满了趣味性。 《考研数学三部曲之大话线性代数》的特色除了趣味性之外,还有三个“非常”:语言非常通俗易懂,逻辑非常清晰,例题非常丰富。 本书的主要内容包括高等院校线性代数课程的所有内容,针对考研数学的特殊性进行了强化,同时对于一些传统课本中的重点、难点、疑点以及被忽视的一些潜在要点做出了全新诠释,另外,由于作者常年从事考研培训,本书还包括相当多的不传之秘——考研数
本书是按照线性代数考试大纲规定的章节和题型进行分类解析的,将不同年份、相同的考点和题型的试题归纳在一起,并给出了详细的解答。本书中每类题型都给出了知识要点和解题思路,所有的试题都给出了详细的解答过程,并尽量做到一题多解,其中很多试题的解法是编者根据多年的考研辅导和教学经验总结出来的,具有独到之处。本书在每道题详解的基础之上,都给出了名师评注,达到举一反三,触类旁通的效果。
《2017硕士研究生入学考试数学复习与解题指南》主要是为报考工科类和经管类硕士研究生的考生编写的,全书由高等数学、线性代数和概率统计三部分组成.其中前两部分与同济大学数学教研室编写、高等教育出版社出版的《高等数学》上、下册和《线性代数》教材紧密配合,同时增加部分外数学竞赛的典型题目。书中对各部分的重要概念和基本理论(定理和公式)作了系统的概括,着重讨论基本题型与解题方法,必要时对例题进行了详尽的分析和总结,以扩大学生思路,提高分析问题和解决问题的能力。 全书突出一个宗旨:力求使考生用较少的时间复习掌握好研究生考试大纲所规定的内容,获得较多的解题方法,以便取得更好成绩.《2017硕士研究生入学考试数学复习与解题指南》从历届考题和竞赛试题中筛选了近1200道典型例题,选辑了363道习题并附有习题简
本书是中国人民大学《高等代数简明教程(版)》的配套学习参考书,全书共包括八章内容:多项式、线性方程组和矩阵、矩阵代数、行列式、线性空间与线性变换、特征值与特征向量、正交性与最小二乘法以及实对称矩阵与二次型。每章内容均包括五部分:重点、难点提示,内容概述,典型题型解析,习题详解以及自测题。全书归纳讲解各章典型例题,全面解答教材课后习题,讲解相关考研试题,突出代数学在几何学、经济管理和生活中的应用。本书附录部分还收录了中国人民大学高等代数课程近年的部分期末试题,并给出了详细的答案,以便学生复习和测试。 本书可供经济、管理、计算机、统计、信息、物理、化学等专业学习高等代数或线性代数的学生参考、使用。