证明是数学思想中*重要,也是*开拓性的特征之一。没有证明,*无法谈论真正的数学。本书讲述了证明的演变及其在数学中的重要作用和启发意义。从古希腊几何学时代开始,涵盖代数、微积分、集合、数论、拓扑、逻辑等几乎全部数学分支中的证明故事。我们将看到欧几里德、康托尔、哥德尔、图灵等数学大师的精彩发现和发明。这本书不是教材,它是在讲数学的历史,更是在讲数学思想的演变。作者揭示了数学学习和研究的底层方法和逻辑,让读者看到在数学中什么定理可以被证明,如何证明?什么问题可以(或无法)被解决?为数学研究和发展打开全新的视角。
本书是*数学家保罗·哈尔莫斯的自传,也是他为自己所处的“数学时代”写下的历史掠影。哈尔莫斯因在泛函分析、遍历理论、测度论、布尔代数理论等领域的贡献著称于世。他不仅对整个数学领域的研究保持着浓厚兴趣,而且始终关注着数学世界的人与事。读者可在本书中看到上百位数学家的身影。哈尔莫斯讲述了他们的趣闻轶事,为他们拍照留念,让读者对这群数学家产生*而感性的认识。这本书堪称20世纪的数学“社会史”。同时,作者谈到如何学习、如何做研究、如何营造良好的学习和学术环境,讲述了自己对数学的理解,以*身经历告诉读者,什么是真正的数学家和数学研究,以及怎样才能成为一名数学家。 本书适合数学爱好者、数学研究人员,以及对数学史和科学史感兴趣的大众读者阅读。
本书以通俗易懂的语言和鲜活的案例,阐述博弈论的基本理论框架和主要知识点。全书分成四大部分:第一部分主要论述在同步一次囚徒困境博弈中,尽管合作对整体而言是最优的,但不合作却是个体的最优策略。书中对困境的机理及其在现实社会生活中的具体表现做了分析,还介绍了同步一次博弈的其他一些有趣场景和案例。第二部分讨论重复博弈,围绕如何从困境走向合作展开,重点介绍在重复博弈中,自利行为和长期主义可以催生合作这一重要原理及其具体应用。同时还介绍了混合策略的基本思想。第三部分讨论序贯博弈。参与者行动有先后顺序,那些与自身利益相冲突的决策,会在其他参与者行动之后发生变化。参与者可以通过承诺行动改变竞争对手的预期,以促使其选择对自己有利的行动。第四部分是不完全、不对称信息下的博弈,主要阐
教学设计是指教师在教学过程中,依据教学的一般原理和教学内容、目标、要求,结合自身的经验和特点,从学生知识、能力状况的实际出发,对各种教学要素进行统筹整合,制订教学方案的技术性活动,它是根据教学对象和教学目标,确定适当的教学起点与终点,将教学诸要素有序地安排并优化,形成教学方案的过程. 本书共 7章,内容包括总论、随机事件与概率、一维随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、极限定理、数理统计.涉及教学设计总论和 24节课程教学设计,每节课程教学设计包括:教学目的、教学思想、教学分析(教学内容、教学重点、教学难点、对重点、难点的处理)、教学方法与策略(课堂教学设计思路、板书设计)、教学安排(教学进程框架、教学进程详细内容)和教学评价 6个部分.c
以上ISBN信息均为平台自动生成,部分商品参数可能存在些许误差,商品准确参数详情可咨询客服。本店为新华书店总部直营店铺,所售图书均为正版,请放心购买! 注:预售品种请单独下单,与预售品种一起拍的品种默认和预售品种一起发货! 商品目录加载中......
本书定位于夯实数学建模基础,采用主流编程方法和简洁代码实现常用的数学建模算法,以案例为导向,围绕数学建模知识体系展开。全书分5篇,共11章。前两章是数学建模基础篇,包括数学建模介绍、数学建模的一般流程(初等模型)、如何从算法到编程实现(层次分析法与自定义函数);接着按算法板块组织内容,包括微分方程模型篇(人口模型、传染病模型)、优化模型篇(规划模型、投资优化策略、优化模型进阶)、评价模型篇(经典评价模型、模糊理论)、预测模型篇(常规预测模型、时间序列分析)。本书有配套源码资源和电子课件。 本书可作为高等院校数学建模的入门教材,也可作为数学建模指导教师的参考资料,还可作为其他相关行业人员、科研人员使用数学模型解决实际问题的参考用书。
潘鑫编著的《考研数学三部曲之大话高等数学》 以“盖楼”为大的背景。读者每阅读完一章,就是盖 完了大楼的一层。而每层中又分为“砖”和 “房间”两部分,先运来“砖”再搭建“房间”。这 种安排内容的方式使得全书充满了趣味性。本书的特 色除了趣味性之外,还有三个“非常”。语言非常通 俗易懂,逻辑非常清晰,例题非常丰富。本书的这四 个特色使得本书区别于市场上的同类图书。 本书的主要内容包括:数列的极限的定义,函数 的极限的定义,数列的极限的基本计算方法,函数的 极限的基本计算方法,函数的连续性,等价无穷小, 保号性及其推论,可导的定义,可导的等价定义,常 用的导数公式,求曲线的渐近线,分段函数求导,求 函数的高阶导数,求函数在某区问的最值,求两条曲 线的交点个数,求一个方程的实根个数,证明恒等式 ,
《北大燕园·2015年李正元、李永乐考研数学(9):数学全真模拟经典400题(数学3)》是依据考研数学大纲为2015年考研读者全新优化设计的一本全真模拟训练套题,本书中的试题难度略高于2014年考研试题,解答题(包括证明题)体现了考试重点、难点内容,综合性比较强;选择题与填空题着重考查考生对基本概念、基本公式、基本定理的理解和运用,适用于第三阶段复习训练之用。
李正元、李永乐、刘西垣主编的《数学全真模拟经典400题(数学2)》是依据考研数学大纲为2014年考研读者全新优化设计的一本全真模拟训练套题,本书中的试题难度略高于2013年考研试题,解答题(包括证明题)体现了考试重点、难点内容,综合性比较强;选择题与填空题着重考查考生对基本概念、基本公式、基本定理的理解和运用,适用于第三阶段复习训练之用。本书中的每道题均有较透彻的分析、详细解答、归纳总结的评注,因此希望考生在做题时,如果遇到了困难,不要急于看分析与解答,要多思考,只有这样才能达到本书编写的目的,才能提高应试水平,才能取得好成绩。
《概率论与数理统计》是研究生入学考试数学试卷中的重要学科,这门课的特点是深入浅出,向我们介绍了概率统计的观点、方法、模型,给我们提供了丰富的、自由发挥想象的空间。但本课程的应用性非常突出,即紧密的围绕着独立性与不相关性的判别方法,以及基于此条件推广出的大数定律、中心极限定理、点估计、假设检验等重要而实用的话题。因此围绕深入浅出的主题,特编写此书以帮助同学们快速、高效、精准的复习这门课程.此门课程是研究生入学考试三门数学课中相对较简单的一门,不需要耗费过多的精力。只要读者们按照理解应用、剖析真题、归纳总结、灵活变通四个要求来进行复习,我相信可以在较短的时间内完全掌握此门课程,并且获取高分甚至满分。希望读者朋友们举重若轻、坚定信念,通读这必修的8课,概率统计的满分指日可待。
本书从数学、哲学、计算机科学、神经科学和人工智能等角度,全面阐述了贝叶斯理论背后的基础知识、思维方式和丰富哲理。贝叶斯定理一旦与算法相结合,就不再是一套枯燥的数学理论或认识论,而变成了应用广泛的知识宝库,催生了众多现代数学定理,以及令人称道的实践成果。作者一改传统的数学探讨模式,不仅展现了贝叶斯理论背后的科学思想,还阐述了它与人类思维之间的深刻关系,并对各相关领域和人工智能的发展进行了展望。本书适合喜爱数学、算法、机器学习、人工智能、逻辑学和哲学的大众读者,读者无须过多数学和算法知识就能读懂。
本书以混杂系统 化控制及其在生物数学领域的应用研究为主 ,系统介绍了连续动力系统、时滞动力系统和脉冲微分动力系统的**控制理论与方法。内容涉及传染病 控、疾病的 方案设计、渔业资源管理、具有农药残留效应的生物控制、状态脉冲反馈控制生态模型、基于综合管理策略的蚜虫个体模型的 化控制问题等研究成果。