本书是关于机器人学和机器视觉的实用参考书,部分“基础知识”(第2章和第3章)介绍机器人及其操作对象的位置和姿态描述,以及机器人路径和运动的表示方法;第二部分“移动机器人”(第4章至第6章)介绍其基本运动控制模式及其导航和定位方法;第三部分“臂型机器人”(第7章至第9章)介绍其运动学、动力学和控制方面的知识;第四部分“计算机视觉”(0章至4章)包括光照与色彩,图像形成和处理技术,图像特征提取,以及基于多幅图像的立体视觉技术;第五部分“机器人学、视学与控制”(5章和6章)分别讨论基于位置和基于图像的视觉伺服及更先进的混合视觉伺服方法。本书将机器人学与机器视觉知识有机结合,给出了实例算法和程序。作者有完备的代码可下载,用于验证书中知识点和实例,注重如何利用视觉信息控制机器人的运动。
本书详细介绍了目前深度学习相关的常用网络模型(ANN、N、RNN),以及不同网络模型的算法原理和核心思想。本书利用大量的实例代码对网络模型进行了分析,这些案例能够加深读者对网络模型的认识。此外,本书还提供完整的进阶内容和对应案例,让读者全面深入地了解深度学习的知识和技巧,达到学以致用的目的。本书适用于大数据平台系统工程师、算法工程师、数据科学家,可作为对人工智能和深度学习感兴趣的计算机相关从业人员的学习用书,也可作为计算机等相关专业的师生用书和培训学校的教材。
本书详细介绍了目前深度学习相关的常用网络模型(ANN、N、RNN),以及不同网络模型的算法原理和核心思想。本书利用大量的实例代码对网络模型进行了分析,这些案例能够加深读者对网络模型的认识。此外,本书还提供完整的进阶内容和对应案例,让读者全面深入地了解深度学习的知识和技巧,达到学以致用的目的。本书适用于大数据平台系统工程师、算法工程师、数据科学家,可作为对人工智能和深度学习感兴趣的计算机相关从业人员的学习用书,也可作为计算机等相关专业的师生用书和培训学校的教材。
人工智能驱动科学创新(AI for Science)带来的产业变革与每个人息息相关。人工智能作为新一轮科技革命和产业变革的核心驱动力,其潜力已初现倪端。然而,要想推动人类文明的整体跃进,人工智能必须与各交叉领域的科学研究紧密结合,学习科学原理、创造科学模型来解决实际问题,加快科技成果向现实生产力转化。本书聚焦于深度学习、强化学习、迁移学习、深度神经网络等人工智能技术与材料科学、生命科学、电子科学、能源科学、环境科学五大领域的交叉融合,通过深入浅出的语言和具体应用示例,对基本概念、技术原理和应用场景进行了全面的介绍。
本书以零基础讲解为宗旨,面向学习数据科学与人工智能的读者,通俗地讲解每一个知识点,旨在帮助读者快速打下数学基础。 全书分为 4 篇,共 17 章。其中第 1 篇为数学知识基础篇,主要讲述了高等数学基础、微积分、泰勒公式与拉格朗日乘子法;第 2 篇为数学知识核心篇,主要讲述了线性代数基础、特征值与矩阵分解、概率论基础、随机变量与概率估计;第 3 篇为数学知识提高篇,主要讲述了数据科学的几种分布、核函数变换、熵与激活函数;第 4 篇为数学知识应用篇,主要讲述了回归分析、假设检验、相关分析、方差分析、聚类分析、贝叶斯分析等内容。 本书适合准备从事数据科学与人工智能相关行业的读者。