这本《线性代数核心思想及应用》由王卿文编著,运用矩阵论研究的新成果对线性代数中的行列式、矩阵论、线性方程组、多项式、二次型、线性空间和线性变换的理论及应用进行综合研究,以展示线性代数的核心思想及处理线性代数问题的简捷、有效、实用的核心技术。本书还特别研究了一般教科书中难以展开讨论的若干重要内容,精心设计和选编了难度相当或略高于硕士研究生入学考试的典型、实用而新颖的 282道例题和141个习题,以此向读者展示线性代数核心思想和技术的具体应用。书末附有详细的习题答案。 《线性代数核心思想及应用》可供理工科专业的大学生、研究生、高校数学教师以及使用线性代数和矩阵论知识的科技工作者阅读使用。特别适合参加硕士研究生入学考试的考生以及参加大学生数学竞赛的学生参考。
范建熊编著的《不等式的秘密(卷)》部分(1~8章)的内容主要介绍了常用的不等式,如AM—GM不等式、Cauchy—Schwarz不等式、Hslder不等式等,并给出了这些不等式新颖、有趣的证明。通过大量的例子介绍了初等不等式的证明方法和技巧,如Cauchy求反技术、Chebyshev关联技术、平衡系数法、凸函数法和导数等方法。第Ⅱ部分(第9章)是作者收集了近百个不等式的典型问题,内容丰富、解答新颖,富有启发性。《不等式的秘密(卷)》适合高中以上文化程度的学生、教师、不等式爱好者参考使用,是一本数学奥林匹克有价值的参考资料。
本书是《组合数学(第4版)》的修订版,全书共分7章,分别是排列与组合、递推关系与母函数、容斥原理与鸽巢原理、Burnside引理与Pólya定理、区组设计、编码简介和组合算法简介.丰富的实例及理论和实际相结合是本书一大特点,有利于对问题的深入理解.本书是计算机相关专业本科生和研究生的教学用书,也可作为数学专业师生的教学参考书.本书封面贴有清华大学出版社防伪标签,无标签者不得销售。
本书是一部数学问题集,全书分为方田(面积、分数计算)、粟米(比例) 、衰分(配分比例)、少广(开平方、立方)、商功(体积计算)、均输(复杂的配分比例)、盈不足(盈亏)、方程(线性方程组)、勾股(勾股计算及测量)等九章,共246问2O2术,故称“九章算术”。其内容涉及算术、代数、几何等诸多领域,并与实际生活紧密关联,充分体现了中国人的数学观和生活观。全书章与章之间、同章“术”与“术”之间、同“术”所驭算题之间按照由浅入深、由简而繁的顺序编排。 这是一部与现代数学的主流思想完全吻合的中国数学经典著作,一部最早却能体现现代宇宙学精神的书。它被历代数学家尊为“算经之首”的《九章算术》,是中国古代算法的扛鼎之作,与古希腊欧几里得的《几何原本》并列为途径方法大不相同的、东西辉映的世界两大数学体系的代表。本书是其白话译