本书共3章。章讨论了曲线的曲率、挠率、Fre公式、Bouqtlet公式等局部性质,证明了曲线论基本定理。还讨论了曲线的整体性质:4顶点定理、Minkowski定理、Fenchel定理,以及Faxy—Milnor关于纽结的全曲率不等式。第2章引进了基本形式、第2基本形式、Gauss(总)曲率、平均曲率、Weingarten映射、主曲率、曲率线、测地线等重要概念,给出了曲面的基本公式和基本方程、曲面论的基本定理,以及的Gauss绝妙定理等曲面的局部性质。第3章详细论述了曲面的整体性质,得到了全脐超曲面定理、球面刚性定理、极小曲面的gernstein定理、的Gauss—Bon公式及Poincare指标定理。 为了帮助读者熟练地掌握微分几何的内容和方法,书中配备了大量有趣的习题,并在《微分几何学习指导》中给出了详细的解答。 《微分几何》可用作综合性大学、理工科大学、师范大学数学系高年级大学生的
thiook is an outgrowth of my introduction to differentiable manifolds (1962) and differential manifolds (1972). both i and my publishers felt it worth while to keep available a brief introduction to differential manifolds. the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. in differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.). one may also use differentiable structures on topological manifolds to determine the topological structure of the manifold (for example, a la smale [sm 67]). in differential geometry, one puts an additional structure on the differentiable manifold (a vector field, a spray, a 2-form, a riemannian metric, ad lib.) and studies properties connected especially with these objects. formally, one may say that one studies properties invariant under the group of. dif
这本书旨在让读者清晰明了地接触广义相对论,广义相对论的引入,从大爆炸到黑洞,这样很容易激起读者对物理学的浓厚兴趣。附录中提供了大量的数学材料来帮助读者理解正文,而且附录的很多部分本身也是独立完整的。 本书的结构,章主要介绍狭义相对论和基本张量代数,包含一个场论的简要概述。紧接着的两章引入流形和曲率,包含一些具有激发性的物理知识,但主要目标是建立数学框架。第四章引入广义相对论,并且给出一些择一性定理的讨论。紧接着的四章主要讨论广义相对论的主要用途:黑洞,扰动理论和引力波,以及宇宙学。这些章节都贯穿有试验性结论的讨论,使得这些理论的实用性马上显现出来。 本书很适合物理系高年级本科生、研究生以及对广义相对论感兴趣的读者。 注:本书为全英文版。
《塞伯格-威顿方程及其在光滑四流形拓扑中的应用(英文版)》讲述seiberg-witten不变性的作品是众多研究流形作品的一次革新。从自旋c结构的经典材料和相关的狄拉克算子开始,接着在恰当的无限维空间的非线性算子背景中讨论了seiberg-witten方程。给出了这些方程的解空间,叫做seiberg-witten模空间,是有限维的,并且计算出维数。为了和su(2)的情况相对比,seiberg-witten模空间被证明了具有紧性。seiberg-witten不变量实际上是seiberg-witten模空间表示地构形空间中的同调类。最后一章通过计算大多数kahler曲面给出了这些新的不变量,并且从这些曲面衍生出一些基本的拓扑序列。
本书是一本全面介绍分形几何理论及其在各领域应用的专著。全书分成两部分,部分阐述了分形与分形几何的一般理论,包括维数的各种概念及计算方法,分形的局部结构,分形的射影、乘积和交集等;第二部分主要是分形的应用举例,包括自相似集和自仿射集、函数的图、数论和纯数学中的例子、动力系统、Julia集、分形及物理应用等。本书还提供了课程建议和较为全面的参考文献。 本书对分形的介绍深刻而全面,可作为数学工作者和科研人员学习分形的参考书;合理地选择适当的章节,也可作为高年级本科生和研究生的教材。
本书是作者根据多年的微分几何课程的教学经验,并参考外的微分几何著作,为本科生编写的微分几何教材.该教材已被列为安徽省省级规划教材.本书主要讲述经典微分几何的曲线论和曲面论,全书共7章,内容包括:预备知识、标架场、空间曲线的Euclid几何、曲面上的微积分、形状算子、 QUOTE
黄家礼编著的《几何明珠(第3版)》以著名的平面几何定理为素材,系统地介绍了这些定理的历史渊源及各种巧妙简捷的证明与解法,得出许多美妙有趣的引申和推广,并挖掘出这些定理在解题中的一些典型新颖的应用。全书内容丰富、通俗易懂、深入浅出、妙趣横生,对激发兴趣,锻炼机敏的思维能力将大有裨益。《几何明珠(第3版)》可作为大、中学生的课外读物,也可作为中学数学教师的教学参考资料。该书版于1997年由科学普及出版社出版,并获2001年湖北省论著一等奖;第二版于2000年由台湾九章出版社出版。