本书所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;本书系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读本书只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 本书适合大中师生及数学爱好者使用。
欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
《数学理论相对论》这部著作是爱丁顿依据物理世界的相对论理论而创作。主要围绕一个物理学的规则形式展开,其逻辑脉络主要通过引力、相对论、时空、力学、电磁现象和几何体等系统知识来阐述数学理论的相对论,论证详实,思维清晰,视角独特。爱因斯坦曾评价这本书是:“在所有语言中是表达这个主题的版本”。
本书探讨了三角形和圆形的几何结构,主要专注于欧氏理论的延伸并详细地研究了许多相关定理。在讨论的数百个定理和推论中,一些已经给出了完整的证明,另一些未证明的用以留作读者练习使用。本书适合大、中学师生及数学爱好者学习和收藏。
吴燕仙主编的《几何画板课件制作范例教程》共8章:章几何画板入门,介绍几何画板窗口特点;如何进行参数设置;工具箱的使用;几何画板在数学教学中的一些应用。第2章构造,本章通过范例介绍几何画板中构造菜单的基本功能与应用,重点是根据图形本身的定义作图,是后面制作课件的基础。第3章变换,通过范例介绍变换菜单的基本功能及应用,突出了几何性质作图。第4章度量与数据,通过范例介绍数值度量型课件的制作,突出介绍新功能“点的值”含义与应用。第5章绘图与数据,通过范例介绍函数型课件的制作。第6章操作类按钮的制作,介绍同一课件的分步操作和演示,同一页面上方便实现不同课件之间的转换,并通过完整课件制作介绍按钮的应用。第7章综合实例篇——动点问题,通过范例介绍图形运动变化过程中,主动点与被动点关系图形绘制,探求
极小曲面广泛存在于自然界中,很多问题也源于自然界,其理论已经发展成为微分几何的一个内容十分丰富的分支。《现代极小曲面讲义》主要强调利用复分析的方法来研究极小曲面,重点讨论了极小曲面的Gauss映射、Calabi猜想以及Catalan定理的复分析证明,同时作:为《现代极小曲面讲义》的重要补充,在附录中也介绍了近年来由T,H,Coldinq和WP Minicozzill发展起来的一些新的理论和方法。 本书可作为微分几何专业的高年级本科生和研究生的教材或参考书,也可供数学和物理相关领域的研究人员参考。
《数学桥:对高等数学的一次观赏之旅》是一本的数学书。它不是教科书,也不是普及书,而是一本介于这两者之间的“普及性教科书”。它以高中数学为起点,用一种娓娓道来、徐徐展开的方式,向你展示大学数学中的核心内容和亮点,让你欣赏许多令人惊叹的结果,领略它们的自然之美和实用价值。《数学桥:对高等数学的一次观赏之旅》好比一座数学桥,它帮你从以重复性解题操练为基础的高中数学,平安顺利地过渡到以性思想探究为主旨的高等数学。如果你即将或正在学习高等数学,那么《数学桥:对高等数学的一次观赏之旅》将是你学习道路上的好伴侣;如果你已经学完了高等数学,那么不妨也来浏览一下,你很可能会说:“哎呀,原来是这么回事!”
本书不仅综述了有关台风的一般知识,还阐述了台风形成与越赤道气流、低纬西风急流变异之间的关系。介绍了中国降水问题及影响中国特大暴雨形成的主要机制,给出了引发特大暴雨的流场特征揭秘了“非亚支宏观气流”的存在。给出了成功预测出1996年、1998年及1999年我国特大洪涝灾害发生的秘密。
Thisisatopologybookforundergraduates,andinwritingitIhavehadtwoaimsinmind.Firstly,tomakesurethestudentseesavarietyofdefferenttechniquesandapplicationsinvolvingpointset,geometric,andalgebraictopology,withoutcelvingtoodeeplyintoanyparticulararea.Secondly,todevelopthereader'sgeometricalinsight;topologyisafterallabranchofgeometry.本书为全英文版。
《几何原本》是世界上最、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成了一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生了深刻影响。
《解析几何研究》采用度量几何结构和代数方法,重点研究了圆锥曲线和二次曲面,贯串了笛卡儿的两个基本观点,突出了变换与不变量的解题思路,为将解析几何理论应用于实践列举了许多实例,还为平稳过渡到学习高等代数和高等数学打好基础。