1 核心理念 数学思想与方法比知识更重要。 本书不仅传授知识,更强调思维习惯和方式的优化。 2 专家团队 6位全国知名数学特级教师担任主编,60位名师亲编每个思想方法,确保内容的权威性和实用性。 3 视频讲解 每个数学思想方法都配有视频讲解,让学习更加直观易懂。 4 结构清晰 每个方法包括方法介绍、典例示范和巩固练习,确保学生能够全面掌握。 5 方法介绍 简明扼要,快速理解每个方法的内涵和使用策略。 6 典例示范 思路、解答、反思三步走,帮助学生深入理解并应用数学思想。 7 巩固练习 针对性练习,强化数学思想的内化和迁移。 8 高标准、高品位 作者团队以精益求精的态度,反复打磨,确保内容质量。 反对题海战术:注重素养教育,提高学习效率。 贴近学生:站在学生立场思考,易于理解和
本书提供了将公式和数据转换为几何形式的指令,为学生提供了一系列精心设计的问题,旨在阐明函数和图像的功能及属性。首先采用简单的函数来分析构造图的基本方法,然后介绍线性函数、二次三项式、线性函数、幂函数和有理函数等更复杂问题的解决方法。
本书以典型性、导向性的各层级问题为载体,领悟数学知识的发展和思想方法的创新。 全书分为两篇:技能与方法篇、策略与思想篇,系统梳理初中数学30余种核心方法与20余种高阶策略。
本书是根据课标要求编写的数学教材中的精华读本,提纲挈领的将教材中的重难点囊括其中,方便学生快速记忆。本书内容包括数与代数、图形与几何、统计与概率三部分,按照教材顺序,结合课标要求,提炼核心知识,分考点条目化讲解,便于学生形成系统化的知识体系,迅速提高自己的应考能力,达到事半功倍的效果。 通过 等车记一记,坐车看一看,操场读一读,排队念一念,睡前忆一忆,考前背一背 等,让学生做到 考前一分钟,赢在考场中 。随时随地,想学就学。
本书共两部分。第 1 部分介绍平面几何的基础知识,如概念、公理、定理等,并配有大量练习题,以便读者巩固和拓展所学知识。第 2 部分是习题:习题 1 为基本题,是第 1 部分的基础知识的有效补充,同时为解决后面的难题作铺垫;习题 2 通过一些重要的定理证明介绍经典的解题方法;习题 3 主要训练思维;习题 4 则是需要更多思考的竞赛题 . 本书内容充实、精练,语言简洁,旨在夯实基础,拓宽视野,培养兴趣,提高能力,能满足多种层次读者的需求,适合中学生研习,也可供中学数学教师参考。
本书引自美国Springer出版社,是 盖尔范特初中数学新思维 系列丛书中的一本。本书以提出问题、给出所有解题方法、讲解解题思路的顺序,将学生在初中阶段涉及的三角函数问题贯穿起来,让学生在理解概念的同时灵活应用。
本书是一本为中国留学生和相关的教学工作者精心打造的英汉双语数学专业工具书。全书分为三部分: 第1部分代数初步、代数1、代数2(第1~11章);第2部分几何(第12~21章);第3部分微积分初步(第22~34章)。本书是一本综合的数学知识宝库,按照美国知识体系和教科书章节顺序出词,围绕知识体系展开知识点的介绍,每个数学词条都配有相应的英汉词义、音标、定义、性质、证明、数学符号、例题与答案、造句与写作、竞赛真题与标准化真题,每章都有小结,让读者在查阅词条时能够各取所需。(极其简单的英语部分汉语翻译略去) 本书旨在帮助读者掌握地道的英文数学词汇和标准的惯用表达方式,提升数学英文的综合使用能力,希望借由本书为读者打开体验美国数学教育精髓的窗口,培养读者的数学探索精神和多元的数学理念,即不厌其烦地追求一题多解以拓
坐标方法 是一种将几何图像转换为公式的方法,一种通过数字和字母来描述图像的方法,表示常量和变量。本书探讨了通过坐标方法,几何概念到数字语言的转换,以便定义一个点在空间中的位置。 共分两个部分,*部分介绍直线上点的坐标、平面中点的坐标以及空间中点的坐标,第二部分讨论坐标方法的有趣应用。为了读者能更有效地使用本书,作者在书中边缘留有一系列有用的 道路标志 ,提醒读者需要特别注意的内容,以引导读者进行更深入的探究。
本书是面向中学生的一本简明的代数辅导书,高屋建瓴地总结出了初中代数中的重要知识点,对初中代数的定理、概念等结合例题进行了详细的讲解,并提炼、编制了一些特别能启发思维的练习题。通过这些练习,读者可在初中代数的表达、关键步骤以及书面表达的完整性等方面有所收获和得到启发。本书适合中学生学习,也可供中学数学教师参考。
《动点问题》的大致内容:线段与角中的动点问题、三角形中的动点问题、四边形中的动点问题、圆中的动点问题、圆与多边形结合中的动点问题、函数图象与动点问题、动点问题在综合题中的策略与方法、动点问题的实践与思考。每一讲就一个问题给出几种解题方法,每讲分以下四板块:解题依据:梳理本专题讲解内容所需的定义和性质,为后面的解题方法和计算做好铺垫,打好基础;典型例题:例题具有代表性和典型性,覆盖面广,涉及七年级到九年级的数学内容.每个例题不仅给出方法,还给出选择此方法的理由;方法归纳:对于每类题通过几个例题的讲解,总结这类题目解题方法,让学生在解题时有方法可依,使学生在解题时有思路,有想法,不是无从下手;巩固提升:每个专题精选了练习题,让学生运用所学方法进行做题,提升自我。
本书是以人民教育出版社出版的初中数学教材为依据编写的思维导图集。本书按照每章、每节1张或多张思维导图的布局,共29章,绘制了150张思维导图。本书旨在帮助初中同学们更好地学好数学,特别是在中考备考时更好地梳理知识,提高学习效率和考试成绩,实现自己的人生梦想。
本书中的 355 道题全部是新编的,并按知识点分类 . 通过对这些题的实践训练,可以强化对平面几何基础知识的掌握,激发兴趣,启迪思维,提高解题能力 . 本书适合数学水平中上的学生使用,供参加全国高中数学联赛之用,也可作为备战中考、理科实验班招生考试的学习资料 .
本书是基于北京四中网校优质的数学教学资源和大量学生学习跟踪数据,并与新媒体、新技术相结合,打磨出的一本初中数学通用教辅。全书按专题组织初中数学知识点,配以北京四中名师的视频讲解和知识地图,并依据学习跟踪数据将知识内容和习题进行分层,从而帮助不同层次的学生提升成绩。
本书是浙江、上海名校资优生培养实践成果,源于初中教材、用于高中自主招生,是老师希望高一开学前必须掌握的初中数学100个挑战性问题,每一问30分钟,跳一跳,能够到。
《初中数学千题解》是 浙江思美数学 团队为初中学生与数学教师量身打造的精品丛书。本分册由 全等 100 题 和 几何综合 100 题 两部分组成。前者注重培养学生对几何图形的分析与模型化能力,选取数十个经典模型。后者将题型分为 6 类(不含压轴大题, 以小见大 ):不定项选择、经典反比例、求路径长度、求面积、求极值、求值。书中题目都有详解,并设 思路点拨 栏目,使学生不仅知其然,更知其所以然。此外,本书还着重介绍了选择题、填空题的解题技巧,如 12345 模型、 一线三等角 的构造及相关计算技巧、 瓜豆原理 等。书中题目精选自全国各地知名中学的经典考题,具有很高的实战价值,同时兼顾重点高中的自主招生考试,个别习题难度较大,适合尖子生研习。
本书采用循序渐进的方式, 逐步介绍各种基本的计数原理和计数模式, 深入浅出, 例题丰富,着重突出各种计数模式所适用的计数场合, 强调区分计数对象的重要性。对中学生来说,从中不仅可以学到计数知识,而且还可以学到逐步展开、逐步深入地思考问题的治学精神和治学方法. 本书是中学数学教学内容的有力补充, 可供学有余力的中学生课外阅读.
《巧解、妙解、化繁为简.初中几何一题多解》通过对典型例题的 一题多解 ,重点解决三个方面的问题:*,解题思路和计划是如何想出来的?以帮助学生学会 怎么想 ;第二,执行解题计划时应注意哪些问题?以帮助学生学会 怎么做得更好 ;第三,解题后通过 反思 点拨 及时总结经验,力求透过解法,高屋建瓴,洞察本质,通过巧解、妙解,化繁为简,达到举一反三的水平。