计算广告是一项新兴的研究课题,它涉及大规模搜索和文本分析、信息获取、统计模型、机器学习、分类、优化以及微观经济学等诸多领域的知识。本书从实践出发,系统地介绍计算广告的产品、问题、系统和算法,并且从工业界的视角对这一领域进行具体技术的深入剖析。 本书立足于广告市场的根本问题,从计算广告各个阶段所遇到的市场挑战出发,以广告系统业务形态的需求和变化为主线,依次介绍合约广告系统、竞价广告系统、程序化交易市场等重要课题,并对计算广告涉及的关键技术和算法做深入的探讨。这一版中更是加入了深度学习的基础方法论及其在计算广告中的应用。 无论是互联网公司商业化部门的产品技术人员,还是对个性化系统、大数据变现或交易有兴趣的产品技术人员,传统企业互联网化进程的决策者,传统广告业务的从业者,互联网创
《向量数据库:大模型驱动的智能检索与应用》系统地介绍向量数据库的原理、技术实现及其应用,重点分析传统数据库在处理高维向量数据时的局限性,并提供相应的解决方案。《向量数据库:大模型驱动的智能检索与应用》分为4个部分,共13章,内容涵盖从理论基础到技术实践的多个方面,详细讨论高维向量表示中的信息丢失、嵌入空间误差和维度诅咒等问题,结合FAISS和Milvus等主流开源工具,深入剖析向量数据库的索引机制、搜索算法和优化策略。通过实际案例,展示向量数据库在推荐系统、行为分析、智能诊断、语义搜索等领域的应用,并特别强调企业级语义搜索系统的开发与部署经验。 《向量数据库:大模型驱动的智能检索与应用》不仅提供深度的理论指导,还通过丰富的案例帮助读者掌握如何构建高效的向量搜索引擎,适合从事搜索引擎与推荐系统开发的
本书是基于作者多年的教学与实践撰写的,重点介绍PostgreSQL的核心原理与体系架构,涉及开发、运维、管理与架构等内容。 本书共12章,涉及以下几方面内容:PostgreSQL基础,安装与配置PostgreSQL,管理数据库与数据库实例,管理数据库对象,并行查询,事务与并发控制,应用程序开发,管理数据库安全,备份与恢复,监控、诊断与优化数据库,PostgreSQL的高可用架构,以及从Oracle迁移到PostgreSQL。
随着数字化的发展,数据逐渐融入生产、分配、流通、消费和社会服务管理等环节,为数据的拥有者或使用者带来经济效益,成为一种新型的生产要素,给生产方式、生活方式和社会治理方式带来了深刻的变革。 本书主要介绍数据要素化时代的数据治理。本书分为5篇。第一篇 数据治理新趋势 介绍DataOps的发展及实践,产业级数据治理新趋势,数据治理的场景化、工程化和智能化,以及数据资产的安全运营。第二篇 新理论、新方法和新技术 介绍数业的逻辑及路径、数据治理的闭环管理方法、数据资产价值的呈现、数据治理的共治共享、精益数据治理,以及数据治理的 新四化 。第三篇 新型数据基础设施 详细介绍来自平安人寿、阿里巴巴和镜舟科技3家企业的数据中台产品的创新情况。第四篇 行业数据治理与数据安全治理 首先介绍高校是如何进行数据治理的,然后
本书将从内部组件、外部应用和数据结构3个方面为读者介绍Redis常见、经典的用法与实例,并且所有实例均附有完整的Python代码,方便读者学习和参考。全书分3个部分:第一部分讲内部组件,介绍的实例通常用于系统内部,如缓存、锁、计数器、迭代器、速率限制器等,这些都是很多系统中不可或缺的部分;第二部分讲外部应用,介绍的实例都是一些日常常见的、用户可以直接接触到的应用,如直播弹幕、社交关系、排行榜、分页、地理位置等;第三部分讲数据结构,介绍的实例是一些使用Redis实现的常见数据结构,如先进先出队列、栈、优先队列和矩阵等。本书希望通过展示常见的Redis应用实例来帮助读者了解使用Redis解决各类问题的方法,并加深读者对Redis各项命令及数据结构的认识,使读者真正成为能够使用Redis解决各类问题的Redis专家。 本书适合对Redis有基
内容简介这是一部立足于当下行业实践和政策指引,从工作程序和实体法律角度,对企业数据资产入表的基本内涵、具体流程、数据交易与入表工作的合规要点进行分析归纳的专著,旨在通过深入浅出的分析帮助读者实现在数据交易、数据资产入表领域的快速认知同步。作者曾经在金融监管部门、金融机构和头部互联网平台工作,是国内较早开展数据领域法律实践的律师,曾经为众多企业在场内进行数据交易的产品提供合规评估,为多个大型数据平台企业和金融机构提供数据合规、金融科技的法律服务,包括个人信息合规自评估、证券业跨行业数据共享监管沙盒项目、垂类大模型合规项目等,具有丰富的法律实践和研究深度、广度。全书共12章,主要内容如下:第1和2章 数据要素市场与数据资产入表的内涵介绍首先,从数据要素市场出发对国家层面的政策和法律沿
DolphinDB不仅支持海量数据的高效存储与查询,更开创性地提供了功能完备的编程语言以支持复杂分析,以及高吞吐、低延时、开发便捷的流数据分析框架,是计算能力最强的数据库系统之一。本书从入门概念开始介绍,到实践应用分析,讲解深入浅出、易于理解,是一本具有实践意义的数据分析工具书。本书介绍了如何使用 DolphinDB这一集存储和高性能计算的数据库系统进行数据分析实践,提供了大量金融和物联网等场景的实践案例,读者可以通过借鉴和修改案例中的解决方案,将它们应用于自己的数据分析系统之中。即使是零基础的读者,也能通过学习本书,快速上手实践。
本书共13章,分三个部分:基础篇、实战篇、提高篇。 (1)基础篇(第1~5章),第1章的主要内容是数据挖掘概述;第2章对本书所用到的数据挖掘建模工具Python语言进行了简明扼要的说明;第3章、第4章、第5章对数据挖掘的建模过程,包括数据探索、数据预处理及挖掘建模的常用算法与原理进行了介绍。 (2)实战篇(第6~12章),重点对数据挖掘技术在金融、航空、零售、农业、制造和互联网等行业的应用进行了分析。在案例结构组织上,本书是按照先介绍案例背景与挖掘目标,再阐述分析方法与过程,最后完成模型构建的顺序进行的,在建模过程关键环节,穿插程序实现代码。最后通过上机实践,加深数据挖掘技术在案例应用中的理解。 (3)提高篇(第13章),围绕去编程化的TipDM大数据挖掘建模平台,先介绍了平台每个模块的功能,再以航空公司客户价值
Apache ShardingSphere 是一个基于可插拔特性和云原生原则的新开源生态系统,将其用于分布式数据基础设施有助于增强数据库性能。本书首先简要概述数据库管理系统在生产环境中面临的主要挑战和数据库软件的内核概念;然后介绍使用分布式数据库解决方案、弹性伸缩、用户身份认证、SOL授权、全链路监控、数据库网关和 DistSOL的真实示例,全面讲解 ShardingSphere 的架构组件,以及如何利用它们配置和插入现有的基础架构并管理数据和应用;接着介绍生态系统的客户端 ShardingSphere-JDBC 和 ShardingSphere-Proxy,以及它们如何同时或独立地工作以满足实际需求;最后讲解如何定制可插拔架构以定义个性化的用户策略和无缝管理多个配置,并在各种场景下对数据库进行基准测试和性能测试。
本书主要讲解如何使用SQL+Python提升审计工作的效率。无论是审计师还是会计师,在工作中都会遇到如何获取数据、分析数据的问题,甚至有时想制作一些自动化的工具或利用编程技巧来辅助完成重复性的工作。本书正是从审计师、会计师的实际工作场景出发,讲解 IT 审计的学习技巧、SQL 基础与实战技巧、Python 基础与 Python 实战技巧,以及数据可视化技巧等。
本书深入地探讨云原生数据仓库的理论知识与技术实践,涵盖数据仓库的发展历程、大数据处理技术、云原生数据仓库的概念与特点,以及云计算时代的数据仓库技术。书中详细介绍云原生数据仓库的架构设计,计算引擎、优化器、存储的关键技术,以及资源管理与调度等知识。同时,本书结合Redshift、Snowflake、BigQuery等典型的云原生数据仓库,以及AnalyticDB等具有代表性的国产数据仓库,介绍大量的实践案例。此外,书中针对云原生数据仓库的资源调度、查询优化、运维管理等方面进行深入的剖析,提供大量的最佳实践和应用场景。
数据治理是一门实践中的学问。本书轻理论、重实践,是一份实用的数据治理指南,涉及数据治理组织、管理制度、流程规范、数据标准管理、数据质量管理、元数据管理、主数据管理、数据安全与隐私等主题。全书共分为3篇,第一篇包含第1章和第2章,介绍数据治理的理论与方法;第二篇包含第3章至第6章,介绍数据治理的平台建设与工具;第三篇包含第7章至第9章,介绍不同场景下的数据治理案例,通过案例场景细节解读和工作步骤阐述,帮助读者将数据治理理论转化为切实可行的解决方案和行动策略。本书适合数据管理专家、企业决策者、数据治理从业者,以及对数据治理感兴趣的人士阅读。
本书以数据思维为主题,以数据分析全流程为主线,融合了与数据思维相关的编程语言、统计学基础及案例分析等内容,全书分为4 篇,囊括了数据思维的概念和培养方法、数据来源及体系建设、数据分析三大思维方式及用户流失、用户转化实战等共11 章的内容。本书囊括了数据分析中常用的分析方法,包括经典的海盗(AARRR)模型、麦肯锡的MECE 模型、逻辑树、漏斗分析、路径分析、对比分析、A/B 试验、RFM 模型、K-Means 算法、5W2H 等分析方法,还包括各类方法的实践案例及Python 实操项目。可以说本书是数据分析方法论与统计学知识、编程语言及应用案例的完美结合。 本书适合工作了1~3 年的初级数据分析师;已经掌握了数据分析工具,需要培养数据思维的转行人员;数据科学行业的人力专家和猎头等。
本书以TiDB数据库为基础介绍分布式数据库的运行原理、性能优化和应用场景架构设计。首先,剖析分布式数据库的运行原理与架构;然后,阐述分布式数据库TiDB在表与索引的设计优化、SQL优化、系统级优化方面的方法论,通过融入多个有代表性的案例,帮助读者将方法论对应到生产实践中;最后,梳理场景选型和架构设计过程中读者应该掌握的主要知识点,并对一些分布式数据库的优势场景进行了详细介绍。本书适合希望了解分布式数据库原理,学习TiDB数据库的开发工程师、数据库管理员和架构师阅读,也可以作为高等学校教师或学生学习分布式数据库的参考教材。
本书通过实战案例和可视化的图形讲解数据分析的知识。通过阅读本书,读者可以从容地处理数据,高效地完成数据分析工作。本书共9章,主要内容包括不同场景下的数据分析方法,从业者应具备的数据分析基本知识,数据分析师应具有的思维方式,海盗法则和指标体系建模,用户画像赋能数据分析,数据可视化的实操技巧等。 本书不仅适合产品经理、运营人员、市场营销人员阅读,还适合数据分析人员阅读。
本书是*1 X职业技能等级证书 智能仓储大数据分析 配套教材。根据证书的等级划 分,本套教材分为初、中、高三个等级,总体上每个级别70%的内容是关于运营数据的分析,30%的内容是关于设备数据的分析,每个等级的侧重点及对学生的要求不同。中级教材,在初级教材的基础上,要求学习者能够对智能仓储作业及运营的相关数据开展深入挖掘与分析,掌握推断统计的基本内容,具备初步的SQL与Python等与数据分析相关的编程语言应用能力,可以围绕业务完成较为全面、系统的大数据分析工作。 教材采用活页式设计,以工作任务单元为基本形式,以物流业务流程的开展为主线,从企业真实用人需求出发,立足岗位技能的真实需要,为培养物流类专业技术人才量身定制一套完整的大数据分析知识体系。 本教材适用于中高职、职业技术型大学、应用型本科院校的学生、教
Power BI 自 2015 年 7 月发布后,极大地改变了商业智能市场的格局,连续多年被评为商业智能产品的领导者。本书集合了 20 多套运用 Power BI 的 DAX 引擎来处理、分析常见商业问题的即用型解决方案。 DAX 设计模式是由 BI 领域专家 阿尔贝托 法拉里和马尔科 鲁索总结并提出的。本书同时使用 Power BI 和 Excel 作为工具*行编写,并对应用模式*行了大幅更新,内容涵盖了时间智能、分组、ABC 分类、客户分析、购物篮分析等常用模式。本书所包含的每一套设计模式都经过不断的实践,被提炼为易用的数据模型和优雅的 DAX 公式。 本书适合 Excel 高级用户、商业智能分析人员、使用 DAX 和微软分析工具的专业人士阅读。
这些年,随着工业互联网、人工智能科技的迅猛发展,企业数字化转型是大势所趋。而企业资源计划(Enterprise Resource Planning,ERP)是信息化时代企业最重要的管理层信息系统,在数字化时代同样也是扮演着非常重要的角色,依然是企业的数据枢纽。ERP为企业的信息化建设提供了一种系统的集成解决方案。本书力求从务实的角度,系统地阐述ERP的原理、设计与实施理论,为企业管理者、IT人员提供理论参考,推动ERP应用的健康发展。本书对ERP相关知识的讨论涵盖了原理、设计与实施的全部过程。前5版图书出版后均引起了很大的社会反响,作者收到大量读者来信,并与读者进行了良好的交互。鉴于工业互联网、人工智能、区块链等技术的高速发展给ERP及企业信息化带来的冲击与变革,本书再次改版。本书适合企业的各层领导、项目经理、系统分析员及高级程序员阅读,
详细介绍了企业的数据战略规划和企业内外部数据的应用,并分析了零售、快速消费品、汽车、航空、保险等行业的实战案例,对企业未来的数字化转型也做了简要介绍。
这是一本讲解在数据要素大背景下,企业如何将数据资源开发成数据产品,进而通过数据产品实现数据资产化和资本化的著作,为企业释放数据价值提供了科学的方法论和国内领先的实践方案。 这本书由全球数据资产理事会(DAC)组织编写,融合了国内数据资产管理领域多家企业的10位专家的研究成果和实战经验,得到了湖南数据产业集团、广州数据集团、深圳数据交易所、浙江大数据交易中心、华为、平安、安永、毕马威、德勤、普华永道、浙江大学等企业、机构和高校等近20位高层领导、技术专家和学者的高度评价和一致推荐。 从概念到方法,从理论到实践,从产业政策到行业解决方案,本书将为读者构建全面的数据产品知识体系,核心内容如下: (1)国家和地方出台的数据资产相关政策及其解读,为数据资产实践提供法律准绳;
本书用阿里云Quick BI做示例,帮助读者掌握如何使用数据可视化工具分析财务指标,理顺管理思路,找出关键结论。通过本书,读者将学会制作追踪资产周转率的仪表板,选择适合的图表展示现金的流入、流出,分析企业的利润构成与盈利能力,实现成本管理可视化,利用综合指标对销售业绩进行监控、告警等,并且学会如何基于Quick BI门户和电子表格搭建财务在线分析与协作工作台,以及进行大型企业业财分析体系的整体规划。通过学习本书,初入职场的会计人员有望迅速在财务部门崭露头角,成长为可以为财务总监准备年终汇报材料的“斜杠青年”!本书配有案例源文件、PPT教案,以及案例制作过程视频。若需要Quick BI的免费试用版,可在阿里云网站搜索“Quick BI”获得。
如何从数据中挖掘价值?一是要锻炼数据思维;二是需要选择一个便利快捷的工具。R语言在数据分析方面有着灵活、高效的优势。本书以R语言为基础,深度讲解从数据思维到实战的全过程。在章节组织上,本书从R语言简介及优势入手,再到数据读取、清洗、描述、建模等数据分析的各个环节,由浅入深逐个讲解,是一本实务分析中的 R语言指南 。同时,本书采用大量实际案例辅以说明,既有助于上手分析,也可用于教学使用。 本书所有代码、数据可在狗熊会官网(http://www.xiong99.com.cn/create.php)免费下载。同时,关注狗熊会微信公众号,可获取更多扩展资源。
本书以LabVIEW 2017为基础,讲述LabVIEW图形化编程语言的原理,以及如何利用LabVIEW完成虚拟仪器设计。全书共15章,分为两篇,分别是基础知识篇(第1~13章)和实际应用篇(第14、15章)。第1章,综述虚拟仪器技术的构建思想和方法论。第2~7章,讲述LabVIEW图形化编程语言的基本原理以及编程方法,内容包括LabVIEW入门、基本数据类型、程序结构、复合数据类型、文件I/O、图形显示及其他技巧。第8~12章,阐述如何利用LabVIEW去控制仪器硬件以实现对被测信号的数据采集,内容包括选择专用的数据采集卡进行数据采集; 利用计算机自带的声卡实现数据采集; 利用摄像头完成图像采集; 仪器控制和控制单片机。第13章,讲述用LabVIEW实现仪器应用的若干算法和信号分析处理的相关知识。第14、15章,介绍利用LabVIEW完成有实际应用背景的两个虚拟仪器项目,分别是用LabVIEW构建函
这是一本讲解在数据要素大背景下,企业如何将数据资源开发成数据产品,进而通过数据产品实现数据资产化和资本化的著作,为企业释放数据价值提供了科学的方法论和国内领先的实践方案。 这本书由全球数据资产理事会(DAC)组织编写,融合了国内数据资产管理领域多家企业的10位专家的研究成果和实战经验,得到了湖南数据产业集团、广州数据集团、深圳数据交易所、浙江大数据交易中心、华为、平安、安永、毕马威、德勤、普华永道、浙江大学等企业、机构和高校等近20位高层领导、技术专家和学者的高度评价和一致推荐。 从概念到方法,从理论到实践,从产业政策到行业解决方案,本书将为读者构建全面的数据产品知识体系,核心内容如下: (1)国家和地方出台的数据资产相关政策及其解读,为数据资产实践提供法律准绳; (2)详细阐释数据从原始
本书系统地介绍了数据如何始于业务、取于业务、用于业务。既有扎实的理论铺设,又有具体的案例支撑,通俗易懂地回答了数据 怎么来 和 怎么用 的问题。同时,本书总结出了解决业务分析难题的六大步骤,包括对终数据分析产生关键影响的数据源的选取方法,以及通过对业务模块的判断确定分析方法的适用场景,终推演、验证、分析出结论,并选择的分析结果展现方式,让数据分析全过程形成闭环。 本书的内容从底层原理出发,帮助读者打好数据分析基本功。在原理的讲解过程中,通过提问、思考、解答、案例分享的方式,结合三位专家十多年的行业经验,让读者从根本上理解数据分析、学会数据分析。本书适合数据分析从业也、数据分析爱好者阅读,也适合大中专院校数据相关专业的老师和学生使用。