本书紧扣“大数据”这一时代主题,着眼于侦查领域大数据运用在法律研究方面的空白,构建起包括思维、模式、方法等全方位的大数据侦查体系,同时对大数据侦查可能产生的法律问题进行探讨,为侦查实务中大数据的运用提供方法、法律理论及程序上的指导。
本书主要包括MySQL的安装与配置、数据库的创建、数据表的创建、数据类型和运算符、MySQL函数、查询数据、数据表的操作(插入、更新与删除数据)、索引、存储过程和函数、视图、触发器、用户管理、数据备份与恢复、日志以及性能优化等。通过两个综合案例的数据库设计,进一步讲述MySQL在实际工作中的应用。重点介绍MySQL安装与配置、数据类型和运算符以及数据表的操作。本书注重实战操作,帮助读者循序渐进地掌握MySQL中的各项技术。 本书共有480个实例和14个综合案例,还有大量的经典习题。下载文件中赠送了近20小时培训班形式的视频教学录像,详细讲解了书中每一个知识点和每一个数据库操作的方法和技巧。同时下载文件中还提供了本书所有例子的源代码,读者可以直接查看和调用。 本书适合MySQL数据库初学者、MySQL数据库开发人员和MySQL数据库
本书系统地介绍了大数据挖掘的基本概念、经典挖掘算法、挖掘工具和企业智慧运营应用案例。全书分为9章,内容包括:大数据挖掘与智慧运营的概念,数据预处理,数据挖掘中的四种主流算法:聚类分析、分类分析、回归分析、关联分析,增强型数据挖掘算法,数据挖掘在运营商智慧运营中的应用案例,未来大数据挖掘的发展趋势等。全书以运用大数据挖掘方法提升企业运营业绩与效率为主线,从运营商实际工作中选取了大量运营和销售案例,详细讲述了数据采集、挖掘建模、模型落地与精准营销的全部过程。书中大部分案例的代码、软件操作流程和微课视频可以通过扫描本书封底的下载。本书主要面向运营商及其他高科技企业员工、高等院校相关专业本科生和研究生,以及其他对数据挖掘与精准营销感兴趣的读者。
本书从架构、业务、技术三个维度深入浅出地介绍了大数据处理领域端到端的知识。主要内容包括三部分:部分从数据的产生、采集、计算、存储、消费端到端的角度介绍大数据技术的起源、发展、关键技术点和未来趋势,结合生动的业界产品,以及学术界的研究方向和成果,让深奥的技术浅显易懂;第二部分从业务和技术角度介绍实际案例,让读者理解大数据的用途及技术的本质;第三部分介绍大数据技术不是孤立的,讲解如何与前沿的云技术、深度学习、机器学习等相结合。
本书重点介绍了基础设施运维概念以及如何进行规范操作,实用性高,可操作性强。主要内容如下。章总则部分,定义了规程中用到的术语、编写原则、适用范围。第2章对数据中心运维组织、人员、基本制度、运维流程进行了描述。第3~9章重点描述了高低压变配电系统、发电机组、UPS、直流系统、蓄电池组、冷水型制冷系统、直接膨胀式空调、新风自然冷系统、普通空调、制冷自控系统BA、动力环境监控系统、防雷接地系统、综合布线、安防系统和消防系统的维护技术和维护周期要求。本书旨在指导、规范和帮助数据中心的业主和用户提升运营维护的质量和效率,降低运营维护成本,提高经济效益。本书适用于政府、公共事业、金融、互联网企业基础电信运营企业等数据中心基础设施的运维管理人员阅读。
本书分为三大部分,共九章。第壹部分(章)主要介绍了企业大数据系统的前期准备工作,包括如何构建企业大数据处理系统的软件环境和集群环境。第二部分(第2~7章)首先介绍了Spark的基本原理,Spark2.0版本的SparkSQL、StructuredStreaming原理和使用方法,以及Spark的多种优化方式;然后,介绍了Druid的基本原理、集群的搭建过程、数据摄入过程,以及在查询过程中如何实现Druid查询API;接着介绍了日志收集系统Flume的基本架构和关键组件,以及分层日志收集架构的设计与实践;后介绍了分布式消息队列Kafka的基本架构和集群搭建过程,以及使用Java语言实现客户端API的详细过程。第三部分(第8~9章)主要介绍了企业大数据处理的两个实际应用案例,分别是基于Druid构建多维数据分析平台和基于JMX指标的监控系统。
本书是畅销书升级版,向读者提供了一套完整的大数据时代背景下的搜索引擎解决方案,详尽地介绍了搜索引擎的技术架构、算法体系及取得的成果,并以模块化的方式进行组织。本书着重介绍了机器学习在搜索引擎中的应用,包括中文分词、聚类、分类等核心的机器学习算法,并结合示例加以介绍和分析,使读者可以更好地理解机器学习在搜索引擎中的价值;同时,阐述了大数据给搜索引擎带来的新特性,结合目前大数据分析的主流工具,在搜索引擎中构建知识图谱,以及进行日志反馈学习,可以使得搜索引擎更加智能。本书不仅适合作为互联网行业从业者的技术参考书,也适合作为搜索引擎爱好者的参考读物。
谁将是忠实的客户?谁将不是呢?哪些消息对 哪些客户细分?如何化客户的价值?如 何将部的价值化?本书提供了强大的工具,可 以从上述和其他重要商业问题所在的公司数据库中 提取它们的答案。自本书第1版问世以来,数据挖掘 已经日益成为现代商业不可缺少的工具。在沙版本中,作者对每个章节都进行了大量的更新和 修订,并且添加民个新的章节。本书保留了早期版 本的重点,指导市场分析师、业务经理和数据挖掘 专家利用数据挖掘方法和技术来解决重要的商业问 题。在不牺牲准确度的前提下,为了简单起见,即使 是复杂的主题,作者也进行了简洁明了的介绍,并尽 量减少对技术术语或数学公式的使用。每个技术主 题都通过案例研究和源自作者经验的真实案例进行 说明,每章都包含了针对从业者的宝贵提示。书中介 绍
本书主要围绕数据结构的基本知识点,设计了8个大型综合性练习案例,通过相关背景知识的回顾、题目解析与实现要点的分析以及测试方法分析等,为学生完成综合性的数据结构实践提供参考。本书所附光盘内容为这8个课程设计案例的源程序及教材中描述的测试数据。本教材还提供了8个课程设计题目及其简要的提示。这些案例和题目大多取材于程序设计竞赛题,具有较好的趣味性和技巧性。 本教材可作为数据结构课程配套的实验教材,也适合于对C程序设计以及数据结构有初步基础的读者学习数据结构的设计方法和提高编程技巧。
本书向读者提供了一套完整的大数据时代背景下的搜索引擎解决方案,详尽地介绍了搜索引擎的技术架构、算法体系及取得的效果,以模块化的方式进行组织。着重介绍了机器学习在搜索引擎中的应用,包括中文分词、聚类、分类等核心的机器学习算法,并结合示例加以介绍和分析,使读者可以更好地理解机器学习在搜索引擎中的价值。还阐述了大数据给搜索引擎带来的新特性,结合目前大数据分析的主流工具,在搜索引擎中构建知识图谱,以及进行日志反馈学习机制,使得搜索引擎更加智能。本书适合作为互联网行业从业者的技术参考书,也适合作为搜索引擎爱好者的参考读物。
本书系统介绍了基于MATLAB语言的探索性数据分析与实现方法。本书共分10章,从实际数据集与探索性数据分析的基本概念讲起,内容涉及数据模式的发现、线性与非线性降维方法、数据巡查方法、聚类分析,以及用于探索性数据分析的数据可视化方法。除了基本分析与实现方法,书中也给出了丰富的应用实例,并提供了大量免费的相关资源,全部实例代码都可以直接用于探索性数据分析。
本书结合理论和实践,由浅入深,多方面介绍了Hadoop这一高性能的海量数据处理和分析平台。全书5部分24章,第Ⅰ部分介绍Hadoop基础知识,主题涉及Hadoop、MapReduce、Hadoop分布式文件系统、YARN、Hadoop的I/O操作。第Ⅱ部分介绍MapReduce,主题包括MapReduce应用开发;MapReduce的工作机制、MapReduce的类型与格式、MapReduce的特性。第Ⅲ部分介绍Hadoop的运维,主题涉及构建Hadoop集群、管理Hadoop。第Ⅳ部分介绍Hadoop相关开源项目,主题涉及Avro、Parquet、Flume、Sqoop、Pig、Hive、Crunch、Spark、HBase、ZooKeeper。第Ⅴ部分提供了三个案例,分别来自医疗卫生信息技术服务商塞纳(Cerner)、微软的人工智能项目ADAM(一种大规模分布式深度学习框架)和开源项目Cascading(一个新的针对MapReduce的数据处理API)。本书是一本很好不错、全面的Hadoop参考书和工具书,阐述了Hadoop生态圈的很新发展和应用,程序员可以