Stata是一种功能全面的统计分析软件包,具有易操作、运行速度快、功能强大的特点,主要针对经济、管理、医学、农学、教育、市场研究、社会调查等行业和领域,是大数据时代为流行的计量软件之一。 全书内容共分17章。第1、2章介绍Stata操作入门及数据处理基础知识、描述性统计与图形绘制基础。第3~5章介绍假设检验、方差分析、相关分析等基础分析方法。第6~10章通过相关案例介绍经典及放松各种假定条件的回归分析,包括基本线性回归分析、线性回归分析诊断与处理、非线性回归分析、因变量离散回归分析、因变量受限回归分析等应用。第11~16章以典型案例讲解主成分分析与因子分析、聚类分析、时间序列数据分析、面板数据分析、生存分析、多方程模型等高级分析方法。第17章介绍如何使用Stata进行高质量的综合性研究,讲解研究方案设计、调查问卷的制
本书以统计学史上著名人物的伟大成就为脉络,将数据分析这一学科的发展历程娓娓道来。从开普勒仰望星空拉开统计学序幕,贝叶斯提出主观概率,到人工智能、深度学习逐步渗透今天的日常生活。本书带领读者在数据科学的熠熠星光下,看透大数据的深邃内核。
本书对可视化技术、交互技术以及数据分析方法进行了系统和全面的讲解。介绍了交互式可视化数据分析解决方案的设计标准,论述了设计中的影响因素以及工作流程的检验方法。读者可以从中了解可视化编码的基础知识,以及用于多元数据、时间数据、地理空间数据和图形数据等方面的众多可视化技术。 书中专门用一章的内容来介绍与可视化效果互动的常规概念,并且利用图示来说明现代交互技术如何推动可视化数据分析的发展。针对如今庞大而复杂的数据,本书涵盖了自动化分析计算支持可视化数据分析的相关内容,另外还介绍了多屏幕环境下的高级可视化概念、数据分析过程中的用户指南以及渐进式可视化数据分析等技术。 作者用简洁明了的术语以自上而下的视角解读了交互式可视化数据分析。众多真实案例和丰富的插图将使学生、本领域专家、数据密
本书的主要内容有:深入探讨BigQuery的内部工作方式,包括其整体架构。学习BigQuery支持的数据类型、函数和运算符。优化查询语句和schema,从而提高性能或降低成本。使用标准SQL中高级功能,如GIS、历史快照、DDL/DML、用户定义函数和脚本。使用BigQuery ML解决各类机器学习问题。学习如何保护数据、监控作业,以及授权用户。
本书探索工业大数据的 工程方法体系 并介绍了其中的关键技术,提出了多领域的工业物理对象建模方法和查询技术。全书共10章,第1章讨论了工业大数据的内涵与特点,并给出了工业大数据工程的三个要素,即数据资源、数据分析和数据应用;第2~4章提出了领域模型驱动的数据资源的建模技术,并给出了工业大系统技术与建设方法;第5、6章讨论了敏捷工业大数据分析与运维方法,并阐述了背后的分析软件技术;第7章讨论了用户驱动的数据应用的低代码开发技术;第8~10章用风电、水电、煤矿综采三个行业,展示了工业大数据工程方法的应用过程。
本书基于流行稳定版Flink 1.13进行讲解,从Flink数据处理思想开始讲起,带领读者深入理解Flink的基本架构,进而由浅入深结合具体案例进行讲解,详细剖析了Flink中DataStream API的使用,并对Flink中的时间语义、状态、容错机制等重要概念进行了详尽的阐释。同时,本书还对实际开发过程中常用的Flink SQL、CEP等高层级API进行了细致讲解,以电商网站中的实际应用为场景,提供了大量的代码实现。本书分为12章:第1~5章,带领读者初步认识Flink并编写基本的Flink程序;第6~10章,深入探讨了Flink内部的高级应用。第11~12章,讲解了Flink提供的扩展功能。本书适用于大数据的学习者与从业人员,以及院校大数据相关专业的学生,也是大数据学习的书籍。
大数据资源规划与统筹发展是新技术背景下提出的重大命题。本书围绕这一重大命题,将大数据置于国家战略高度,详细阐述了大数据资源规划理论模型,以及如何建设大数据资源规划与统筹发展保障体系。本书作为专著,具有很强的专业型、理论性和时代性,本书以 大数据资源规划理论与统筹发展研究 为主题,以规划理论与应用为切入点,形成大数据资源规划理论,建立大数据资源规划模型,理顺基于规划的大数据资源统筹发展路径,并以面向公共文化服务的大数据资源规划与统筹发展应用为案例进行剖析,促进大数据资源的多场景综合应用、服务大数据政策规划的制定和国家大数据战略的实现。
本书是以给广大量化研究者建立一个一般性的量化研究流程(主要是量化策略开发,也包括其他量化研究)为主旨来展开编写的。全部章节以流程化的形式展开,从量化研究的数据开始到终以交易结束。数据库、指标库、算法库、工具库、可视化库、报告和日常工作系统、交易系统这7个核心库/系统分别解决了量化研究中某一个环节的问题。量化研究是以上述7个核心库/系统所代表环节的一个循环,在这个循环中不断进行的改进和研究。它将数据和思想相结合,通过交易来检验研究成果是否达到预期,然后改进思想和更换数据,并投入下一次交易中。这样的循环使得每一次量化研究都更加接近理想效果。而在循环的每一个环节上,本书给出了一系列工具、算法、技术等来支撑各个核心库/系统的功能。本书在编程语言上以Matlab和Python为主,数据库一章用到了MySQL的基
本书从需求规划、需求实现到可视化展示等,遵循项目开发的主要流程,全景介绍了电商行业Flink实时数据仓库的搭建过程。在整个项目的搭建过程中,介绍了主要组件的安装部署、需求实现的具体思路、问题的解决方案等,并穿插了大数据和数据仓库相关的理论知识,包括数据仓库的概念介绍、电商业务概述、数据仓库理论介绍和数据仓库建模等。最核心的内容是代码中对Flink的灵活应用,为读者展示了Flink处理数据的多种可能性。本书最后还详细讲解了项目的性能调优技巧和实战案例,帮助读者掌握更多的实战经验。 本书适合具有一定编程基础的读者学习或作为参考资料,通过本书,可以使你快速了解实时数据仓库,全面掌握实时数据仓库的相关技术。
本书按照需求规划、需求实现、可视化的流程进行编排,通过项目开发的主要流程,介绍数据仓库的搭建过程。在整个数据仓库的搭建过程中,本书介绍了主要组件的安装部署、需求实现的具体思路,以及各种问题的解决方案等,并在其中穿插了许多与大数据和数据仓库相关的理论知识,包括数据仓库的概念、电商业务概述、数据仓库理论和数据仓库建模等。 本书共14章,其中,第1~3章是项目的前期准备阶段,主要介绍了数据仓库的概念和搭建需求,并初步搭建了本数据仓库项目所需的基本环境;第4~7章是项目的核心部分,详细介绍了数据仓库的建模理论,并完成了数据从采集到分层搭建的全过程,是本书的重点部分;第8~14章是对数据治理各功能模块的实现,针对数据治理的不同功能需求分模块进行实现。 本书适合具有一定编程基础并对大数据感兴趣的读者
本书系统、全面地介绍大数据技术的基础知识。全书共13章,首先介绍大数据行业与技术趋势;然后介绍大数据生态圈的各项技术,包括分布式文件系统、Hive分布式数据仓库、HBase技术原理、MapReduce和YARN技术原理、Spark基于内存的分布式计算、Flink流批一体分布式实时处理引擎、数据采集与数据装载工具、Kafka分布式消息订阅系统、高可靠集群安全模式、分布式全文检索Elasticsearch、Redis内存数据库等;介绍华为大数据解决方案。通过学习本书所讲内容,读者可以整体了解大数据技术,掌握大数据生态圈中各项技术为基础和关键的知识。本书可作为数据科学与大数据、软件工程、计算机科学与技术等专业的大数据概论课程的教材,也可供大数据工程技术人员学习或参考使用,还可作为华为HCIA认证考试的培训教材。
本书是C程序设计的进阶书籍,在介绍C语言基础知识的同时,重点强调了软件设计的思想:共性与可变性分析、面向对象的编程思想等,并提供了详尽的范例程序。使读者体会到思想的重要性,面向对象编程并不局限于特定语言,使用C语言同样可以进行面向对象的编程。本书分为4章:章,主要介绍C语言的基础知识,并提及了共性与可变性分析;第2章,主要介绍C语言的进阶用法,特别是结构体及函数指针;第3章,主要介绍算法与数据结构,包含链表、哈希表、队列等;第4章,主要介绍面向对象的编程思想,包含面向对象的基础概念、虚函数的妙用、状态机设计等。本书既可作为高等院校本科、高职高专电子信息工程、自动化、机电一体化及计算机专业的,也可作为电子及计算机编程爱好者的自学用书,还可作为软件开发工程技术人员的参考书。