本书全面且深入地呈现了深度学习领域的知识体系,系统梳理了该领域的核心知识,阐述了深度学习的关键概念、基础理论及核心思想,剖析了当代深度学习架构与技术。全书共 20 章。本书首先介绍深度学习的发展历程、基本概念及其在诸多领域(如医疗诊断、图像合成等)产生的深远影响;继而深入探讨支撑深度学习的数学原理,包括概率、标准分布等;在网络模型方面,从单层网络逐步深入到多层网络、深度神经网络,详细讲解其结构、功能、优化方法及其在分类、回归等任务中的应用,同时涵盖卷积网络、Transformer 等前沿架构及其在计算机视觉、自然语言处理等领域的独特作用。本书还对正则化、采样、潜变量、生成对抗网络、自编码器、扩散模型等关键技术展开深入分析,阐释其原理、算法流程及实际应用场景。对于机器学习领域的新手,本书是全面且
本书全面、深入地探讨了人工智能(AI)领域的理论和实践,以统一的风格将当今流行的人工智能思想和术语融合到引起广泛关注的应用中,真正做到理论和实践相结合。全书分7个部分,共28章,理论部分介绍了人工智能研究的主要理论和方法并追溯了两千多年前的相关思想,内容主要包括逻辑、概率和连续数学,感知、推理、学习和行动,公平、信任、社会公益和安全;实践部分完美地践行了 现代 理念,实际应用选择当下热度较高的微电子设备、机器人行星探测器、拥有几十亿用户的在线服务、AlphaZero、人形机器人、自动驾驶、人工智能辅助医疗等。本书适合作为高等院校人工智能相关专业本科生和研究生的教材,也可以作为相关领域专业人员的参考书。
本书全程图解式讲解,通过大量全彩插图拆解概念,让读者真正告别学习大模型的枯燥和复杂。 全书分为三部分,依次介绍语言模型的原理、应用及优化。第一部分 理解语言模型(第1~3章),解析语言模型的核心概念,包括词元、嵌入向量及Transformer架构,帮助读者建立基础认知。第二部分 使用预训练语言模型(第4~9章),介绍如何使用大模型进行文本分类、聚类、语义搜索、文本生成及多模态扩展,提升模型的应用能力。第三部分 训练和微调语言模型(第10~12章),探讨大模型的训练与微调方法,包括嵌入模型的构建、分类任务的优化及生成式模型的微调,以适应特定需求。 本书适合对大模型感兴趣的开发者、研究人员和行业从业者。读者无须深度学习基础,只要会用Python,就可以通过本书深入理解大模型的原理并上手大模型应用开发。书中示例还可以一
《深度学习》内容介绍:《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。 《动手学深度学习》内容简介:本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以
本书是《工程控制论》(第三版)的下册。这一册共九章。第十三章讨论摄动理论在控制系统设计中的应用,其中特别说明在飞行控制系统中的应用。第十四、十五两章介绍控制系统在随机干扰下的分析和设计。第十六、十八章讨论了适应性控制系统的设计。第十九章介绍了提高控制系统可靠性的各种方法。第十七、二十、二十一这三章分别是:逻辑控制和有限自动机(第十七章),信号与信息(第二十章),大系统(第二十一章)。这些方面已构成工程控制论这门学科的重要研究方向。书末还附有“有关中文著作目录选辑”,可供读者查阅。
《强化学习(第2版)》作为强化学习思想的深度解剖之作,被业内公认为是一本强化学习基础理论的经典著作。它从强化学习的基本思想出发,深入浅出又严谨细致地介绍了马尔可夫决策过程、蒙特卡洛方法、时序差分方法、同轨离轨策略等强化学习的基本概念和方法,并以大量的实例帮助读者理解强化学习的问题建模过程以及核心的算法细节。《强化学习(第2版)》适合所有对强化学习感兴趣的读者阅读、收藏。
9787115600820 动手学深度学习(PyTorch版) 109.80 9787115584519 动手学强化学习 89.90 9787115618207 动手学机器学习 89.80 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用
本书是微软推出的 AI for Beginners 系列课程的中文版,专门为希望进入 AI 领域的初学者设计。本书提供为期 12 周、共24 堂课的系统学习路径,每堂课配有 Jupyter Notebook 实践笔记本,附带测验与练习,中文版还在 Gitee 上托管了课程相关的 Notebook,便于读者在实践中掌握人工智能的核心概念和应用。 书中涵盖如下内容:AI 历史与发展,探索人工智能从符号到深度学习的演变;神经网络与深度学习,使用 TensorFlow 和 PyTorch 框架讲解神经网络的基本原理及应用;计算机视觉与自然语言处理,学习图像识别和文本分析技术;其他 AI 技术,如遗传算法和多智能体系统等。 本书适合 AI 爱好者、初学者,以及相关专业的学生、老师阅读,不需要复杂数学背景即可轻松入门,通过实战项目提升操作能力。
《神经网络与深度学习:案例与实践》是《神经网络与深度学习》(蒲公英书)的配套实践书,由复旦大学邱锡鹏教授和百度飞桨团队合作完成。本书在章节设计上和《神经网络与深度学习》一一对应,并以模型解读+案例实践的形式进行介绍。模型解读主要聚焦如何从零开始一步步实现深度学习中的各种模型和算法,并结合简单的任务来加深读者对模型和算法的理解;案例实践主要强调如何使用飞桨预定义API来更好地完成实际任务,会涉及一些数据预处理问题。建议读者将本书和《神经网络与深度学习》结合阅读,在动手实践中更深入地理解深度学习的模型和原理。
人工智能 (AI) 时代已悄然而至,然而对 AI 伦理学的研究却刚刚起步。与以往的技术革命不同,AI 有望在多个领域取代人类,但也有伤害人类的潜在风险。为防止对AI技术的滥用,我们在复杂性变得不可控之前,必须把糟糕的情况都预想到、分析到。 《人工智能伦理》从人工智能的关键内容(包括图灵测试、数据、知识、机器学习、自我意识等)出发,尽可能地用朴素的语言讲清楚复杂的概念,揭示出各种AI伦理问题以唤起读者的思考。本书基于大量真实数据,阐述了和平、合理发展 AI 技术的伦理思想,对 AI 技术可能引发的某些社会问题(如技术失业、两性平等)也做了剖析。
本书全程图解式讲解,通过大量全彩插图拆解概念,让读者真正告别学习大模型的枯燥和复杂。 全书分为三部分,依次介绍语言模型的原理、应用及优化。*部分 理解语言模型(第1~3章),解析语言模型的核心概念,包括词元、嵌入向量及Transformer架构,帮助读者建立基础认知。*部分 使用预训练语言模型(第4~9章),介绍如何使用大模型进行文本分类、聚类、语义搜索、文本生成及多模态扩展,提升模型的应用能力。第三部分 训练和微调语言模型(第10~12章),探讨大模型的训练与微调方法,包括嵌入模型的构建、分类任务的优化及生成式模型的微调,以适应特定需求。 本书适合对大模型感兴趣的*、研究人员和行业从业者。读者无须深度学习基础,只要会用Python,*可以通过本书深入理解大模型的原理并上手大模型应用开发。书中示例还可以一键在线运行,
传统材料研发模式主要基于实验“试错法”,其研发周期长、效率低,人工智能驱动的科研范式变革和新材料数字化研发模式能有效地降低研发成本,缩短研发周期。本书基于计算、数据、AI和实验“四位一体”的新材料集成式智能化研发理念,提出了基于材料基因编码的新材料智能设计范式,从企业级新材料研发和面向科研的材料计算视角,重点围绕高通量材料集成计算、多尺度材料计算模拟、材料数据库、材料数据机器学习、新材料研发制造软件等介绍了新材料数字化智能化研发和设计基本概念、方法、技术和应用。本书同时也介绍了国产的高通量多尺度集成式材料智能化设计工业软件MatCloud+,并通过一些精选案例介绍了材料计算、数据和新一代人工智能等数字化研发方法技术在新能源、金属/合金、石油化工、复合材料、新型功能材料等重点材料行业或领域的
深度学习绝非不可窥探的黑箱!深入理解其模型和算法的实际运作机制,是驾驭并优化结果的关键。你无需成为数学专家或资深数据科学家,同样能够掌握深度学习系统内部的工作原理。本书旨在通过深入浅出的方式,为你揭示这些原理,让你在理解和解释自己的工作时更加自信与从容。 《深度学习精粹与PyTorch实践》以浅显易懂的方式揭示了深度学习算法的内部运作机制,即使是机器学习初学者也能轻松理解。本书通过平实的语言解析、详尽的代码注释,以及数十个基于PyTorch框架的实战示例,逐步引导你探索深度学习的核心概念与实用工具。本书避免了复杂的数学公式堆砌,而是采用直观易懂的方式阐述每种神经网络类型的运作逻辑。更令人兴奋的是,书中提供的所有解决方案均可在现有的GPU硬件上顺畅运行! 主要内容 ● 选择正确的深度学习组件 ● 训练和评估
本书从多学科交叉的角度将神经生物学在视觉神经机制、神经元信号加工与编码方面的解剖学与电生理学发现和认知心理学关于知觉信息加工、工作记忆等方面的实验结论,与人工智能中关于图像理解与人工神经元网络模型结合起来,设计能够模拟视网膜、初级视皮层和高级视皮层部分图像信息加工功能,以及模拟神经编码微回路的数据结构和层次网络计算模型,并用计算机视觉或图像理解领域常用的测试数据集来验证这些网络计算模型的效能。这些深入考虑了神经生物学基本机制与约束的计算模型,一方面能够在工程方面为图像理解或信息保持提供不同于传统方法的新解决方案,另一方面也为神经科学研究提供了探索神经信号加工内在机理的仿真平台。这些以信息加工神经生理机制和认知心理机制为基本出发点的计算建模研究为人工智能关于表征、神经计算新模型、基于
《人工智能在电气工程中的应用》主要包括人工智能的定义与发展历史以及深度学习和强化学习在电气工程智能化中的应用,从电气工程智能化的技术发展现状和基本概念入手,逐步介绍人工智能在电气工程领域涉及的前沿算法和相关技术及体系。随后分别以具体的应用实例介绍人工智能相关技术在电气工程领域的应用研究现状,主要包括基于人工智能的故障诊断技术、基于人工智能的混合能源系统与电动汽车系统能量管理技术、基于人工智能的控制和优化技术以及基于人工智能的电力电子调制技术。
人工智能驱动的组学挖掘是数据驱动的生物医学研究的支撑技术。组学测序技术逐步向多尺度、跨模态、有扰动等方向发展,但体现出的高维度、高噪声、多模态、标记稀缺等特点,成为制约其有效挖掘的瓶颈。本书面向生命组学数据特点,较为系统和深入地对组学机器学习的主要研究范式、适用场景、分析方法、理论思想进行介绍。结合相应组学挖掘的具体研究案例,向读者展示组学人工智能驱动的生命健康交叉研究的绚烂图景。
本书围绕自主无人系统发展背景、发展现状、技术挑战、伦理道德和政策法律等问题展开阐述。首先介绍了自主无人系统的相关概念、发展历程、发展现状和发展趋势;其次重点分析了自主无人系统涉及的关键技术,包括感知与认知、决策与规划、行动与控制、交互与协同、学习与进化等;然后分析了使用自主无人武器系统面临的伦理道德与政策法律问题,并介绍了主要国家的法律和相关政策;最后对自主无人系统的发展前景进行了展望,指出自主无人系统发展的最终目标是人机协同、人机共融和人机共生。
本书阐述高光谱遥感图像(可以简称为高光谱图像,也可以称为高光谱图像数据或高光谱数据)智能分类与检测的相关方法,主要内容包括高光谱遥感图像成像原理及特点,高光谱图像智能分类相关理论概述,基于机器学习、深度学习的高光谱图像分类,高光谱图像检测相关理论概述,以及高光谱图像特定目标、异常目标检测方法等内容。
本书*且深入地呈现了深度学习领域的知识体系,系统梳理了该领域的核心知识,阐述了深度学习的关键概念、基础理论及核心思想,剖析了当代深度学习架构与技术。全书共 20 章。本书*介绍深度学习的发展历程、基本概念及其在诸多领域(如医疗诊断、图像合成等)产生的深远影响;继而深入探讨支撑深度学习的数学原理,包括概率、标准分布等;在网络模型方面,从单层网络逐步深入到多层网络、深度神经网络,详细讲解其结构、功能、优化方法及其在分类、回归等任务中的应用,同时涵盖卷积网络、Transformer 等前沿架构及其在计算机视觉、自然语言处理等领域的独特作用。本书还对正则化、采样、潜变量、生成对抗网络、自编码器、扩散模型等关键技术展开深入分析,阐释其原理、算法流程及实际应用场景。对于机器学习领域的新手,本书是*且系统的
本书以人工智能方法和生物组学数据分析为主线,阐述了人工智能中的群智能优化、机器学习、深度学习等算法的基本原理,并探讨了如何将这些算法应用于生物信息学相关问题的研究中,如蛋白质复合物挖掘、关键蛋白质识别、疾病基因预测、多种组学(转录组学、代谢组学、微生物组学)数据与疾病的关联关系预测、circRNA-RBP结合位点预测、RNA甲基化位点预测以及药物发现等。本书系统收集整理了生物组学相关数据库,另结合应用问题,从人工智能算法设计到具体流程计算,再到结果分析,均给出了详细步骤,以上均是本书的特色所在。
本书的目的是考虑大型且具有挑战性的多阶段决策问题,这些问题原则上可以通过动态规划和*控制来解决,但它们的精确解决方案在计算上是难以处理的。本书讨论依赖于近似的解决方法,以产生具有足够性能的次优策略。这些方法统称为增强学习,也可以叫做近似动态规划和神经动态规划等。 本书的主题产生于*控制和人工智能思想的相互作用。本书的目的之一是探索这两个领域之间的共同边界,并架设一座具有任一领域背景的专业人士都可以访问的桥梁。
《PyTorch计算机视觉实战:目标检测、图像处理与深度学习》 深度学习是近年来计算机视觉应用在多个方面取得进步的驱动力。本书以实践为驱动,结合具体应用场景,基于真实数据集全面系统地介绍如何使用PyTorch解决50多个计算机视觉问题。 首先,你将学习使用NumPy和PyTorch从头开始构建神经网络(NN),并了解调整神经网络超参数的最佳实践。然后,你将学习如何使用卷积神经网络(CNN)和迁移学习完成图像分类任务,并理解其中的工作原理。随后,你将学习二维和三维多目标检测、图像分割、人体姿态估计等多个实际任务,并使用R-CNN、Fast R-CNN、Faster R-CNN、SSD、YOLO、U-Net、Mask R-CNN、Detectron2等框架实现这些任务。在自编码器和GAN部分,本书将指导你学习面部表情替换、面部图像生成和面部表情处理技术。之后,你将学习如何将计算机视觉与NLP技术(如LSTM、transfor
学科的范式 (科学观与方法论 )是指导学科研究的最高引领力量。然而作者发现:作为信息学科高级篇章的人工智能却遵循着物质学科的范式,使人工智能的研究严重受限。因此,本书实施了人工智能的范式革命:总结了信息学科的范式,以此取代物质学科范式对人工智能研究的统领地位;在信息学科范式的引领下,构筑人工智能的全局模型,揭示普适性智能生成机制,开辟机制主义的人工智能研究路径,重构人工智能的基本概念;发掘信息转换与智能创生定律,创建机制主义通用人工智能理论。后者不但可以融通现行人工智能三大学派,而且可以与人类智能的生成机制实现完美的统一,形成统一智能理论。
本书主要针对智能喷涂机器人关键技术及应用,详细介绍了喷涂机器人动力学建模、运动精度与可靠性分析、主从示教、助力拖动示教、基于数字孪生的离线编程系统、轨迹规划及路径规划、多机协同喷涂及动态监控技术等内容,并阐述了智能喷涂机器人在家具、钢结构及迷彩喷涂等方面的典型应用,总结了柔性化喷涂生产线和智能喷涂共享中心的研究进展。
本书建立人工智能的信息的科学原理。全书有五部分。第Ⅰ部分,人工智能总论,提出信息世界的科学概念,以信息为支点建立科学体系的理论;第Ⅱ部分,信息基本定律,建立了信息世界的基本定义和基本定律;第Ⅲ部分,信息的数学原理,建立了以信息演算理论(离散系统的微积分)、信息解码原理和信息生成原理为三大支柱的信息科学体系的数学原理;第Ⅳ部分,智能的信息科学原理,建立了包括学习的信息理论、自我意识的信息理论、博弈/谋算理论为三大支柱的人工智能的信息科学原理,提出一个自我意识主体的智能就是该自我意识主体的信息的智能论题(intelligence thesis),提出人工智能的孙子模型;第Ⅴ部分,信息的哲学,提出信息时代科学双引擎的方法论和信息时代一些重大科学问题,简单介绍了《孙子兵法》的信息科学原理。