在人工智能的浪潮中,大语言模型技术正以前所未有的速度改变着我们的生活与工作方式。作为这个领域的后起之秀,DeepSeek凭借其开源与高性能的技术路线在2024年年末崭露头角,并迅速成为全球领先的人工智能应用平台之一。本书循序渐进地介绍了DeepSeek相关的各方面知识、经验和技巧,系统梳理了DeepSeek的结构化提示词技巧,并附有大量的模板实例。此外,本书介绍了DeepSeek的特色功能玩法、场景实战应用、高级应用技巧,以及DeepSeek工具集成和本地部署等相关知识。本书力求使零基础读者轻松掌握DeepSeek的使用方法,并学以致用、融会贯通。
《图解人工智能》从基础概念、历史沿革、基础算法、代表性应用、**研究进展、跨学科交叉成果等多个方面深入介绍人工智能。为满足不同程度学习者的学习需求,全书以图片为主并辅以少量文字说明,每节配有 小清爱提问 在线视频,具有初等阅读能力的读者(包括中小学生)可以轻松获得人工智能的基础知识和全局视野;每一节还包括扩展学习资料、深入阅读材料和编程实践资源供高等阅读能力的读者(包括大学生和教师)自学提高。为配合课堂教学,全书每一节都配有PPT课件、附加视频资料、互动演示程序等教学资源。对应不同知识背景的读者,本书有速读、专业、教学3种建议阅读模式。 期待更多人能借此书产生对人工智能学科的探索热情! 本书封面贴有清华大学出版社防伪标签,无标签者不得销售。版权所有,侵权必究。
内容简介 这是一部对人工智能充满敬畏之心的匠心之作,《深入理解Java虚拟机》作者耗时一年完成,它将带你从奠基人物、历史事件、学术理论、研究成果、技术应用等5个维度全面读懂人工智能。 本书以时间为主线,用专业的知识、通俗的语言、巧妙的内容组织方式,详细讲解了人工智能这个学科的全貌、能解决什么问题、面临怎样的困难、尝试过哪些努力、取得过多少成绩、未来将向何方发展,尽可能消除人工智能的神秘感,把阳春白雪的人工智能从科学的殿堂推向公众面前。 全书共8章,逻辑上分为4个部分: 部分 人工智能的起源(第1~2章) 阐述了在人工智能学科创立之前,图灵、香农等先驱们对智能的探索和思考。首先以 人工智能之父 图灵的生平事迹为主线,介绍了图灵机、图灵测试,以及图灵对智能的思考、理解和定义;然后以达特茅斯会议为主线,
这是一部从技术原理、行业应用、商业价值、投资创业、发展趋势5个维度讲解AI Agent的著作,具有科普书和商业书的双重属性。 本书首先详细介绍了AI Agent的技术路径及其在11大领域的应用,丰富的应用案例可以帮助读者深度理解AI Agent产品形态与服务方式;然后深入探讨了AI Agent的商业价值与商业生态,并对AI Agent的企业级应用和投资创业做了很多思考与总结,能够带给读者应用与创业方面的启发。本书将技术、应用及商业理念融会贯通,理论性与实用性兼具,是一本适合业内外人士快速了解AI Agent、提升行业认知的综合指南,得到了很多行业人士、专家及创业者的一致好评。 全书共15章,分为四个部分: 第一部分(第1~3章) 技术认知 首先,介绍AI Agent的概念、特征、定义、发展历程、分类方式,以帮助读者全面认知AI Agent;然后,介绍AI Agent核心技术,展示其技
《DeepSeek 从入门到精通(微课视频版) 提示词设计 多场景应用 工具深度融合》 是一本系统讲解大模型 DeepSeek 应用方法的实用指南,内容涵盖从入门操作、提示词设计、本 地与云端部署到上百种实际场景应用,以及AI 智能体设计,全面展示了 DeepSeek 在办公、写作、 编程、教育、创意等领域的强大能力。全书结构清晰,配合丰富案例与实操技巧,帮助读者快 速掌握与大模型高效交互的方法。 本书最大特色在于实用性与前瞻性并重,既有提示词设计的系统讲解,提供100 提示词模 板,又有 DeepSeek 与 WPS、Word、Excel、Xmind、剪映等常用软件的深度融合案例,真正实 现AI 赋能日常工作与创作。无论你是职场人士、内容创作者、教师学生,还是对大模型感兴趣 的开发者,本书都将为你提供可操作、可落地的指导,助你在 AI 时代实现效率与创意的双重飞跃。
内容简介这是一本人人都能读懂的大模型综合指南,既是一本大模型的科普书,又是一本大模型的商业书。由中国电信研究院天翼智库官方出版,从核心技术、基础设施、商业应用、产业体系、安全治理5个维度全面讲解了大模型。语言上通俗易懂,内容上深入浅出,呈现上图文并茂,给读者良好阅读体验的同时,让读者对大模型的理解事半功倍!无论你是AI工程师,还是完全没有IT技术背景的爱好者;无论你是一线的从业人员,还是企业的管理者和决策者,你都能通过本书系统理解和掌握大模型,从而深刻认识大模型的核心价值和应用潜力,把握住大模型带来的变革和商机。通过阅读本书,我们每个人都能从中收获以下知识:(1)AI的本质和AI发展的4个阶段;(2)大模型的核心技术和大模型的技术进化路线;(3)大模型的算力基础设施和数据基础设施;(4)基座
本书全面阐述了现代因果关系分析,展示了因果关系如何从一个模糊的概念发展成为一套数学理论,并广泛用于统计学、人工智能、经济学、哲学、认知科学、卫生科学和社会学等领域。本书提出了一个全面的因果关系理论,它统一了因果关系的概率、操作、反事实和结构方法,并提供了简单的数学工具来研究因果关系和统计关联之间的关系。本书通过融合领域知识、常识约束、文化传承的概念等来补充数据信息,为基于统计的机器学习中遇到的基本问题提供了科学的解决方案。
本书结合人形机器人研究中各类先进方法,系统地介绍了驱动人形机器人运动的基础知识、推导过程以及应用案例,阐述了人形机器人的运动学、动力学表示方法,解释了ZMP的概念及其与地面反作用力的关系,描述了人形机器人双足行走行为的生成和控制方法,并拓展了其他多种动作的实现方法,最后介绍了动力学建模、仿真和高效动力学的计算方法。
内容简介 这是一本全方位讲解如何利用AI工具为HR赋能的著作,是AI时代HR提升职场竞争力的实战指南。作者基于深厚的HR管理经验和AI实战经验,通过科学的方法、高效的提示词、丰富的案例、清晰的步骤,细致地讲解了如何利用 AI 工具提高工作效率、优化管理流程、提升人才管理水平。 从AIGC的基础知识到AI工具的使用,从AI在人力资源全生命周期所有场景中的应用到使用AI的风险防控,本书全面系统地讲解了HR需要掌握的全部AI知识。具体地,读完并学会本书,读者将能掌握以下知识: (1)AIGC的基础知识以及ChatGPT、Kimi、文心一言等AI工具的使用方法; (2)AIGC在人力资源领域的价值和应用挑战,以及HR的AI能力模型; (3)针对人力资源的提示词方法和技巧; (4)AI辅助HR的日常工作,包括职场文案、项目管理、制度撰写、流程管理等场景; (5)AI辅助人力资源
本书强调 把 AI作为方法 (AI即 Artifcial Intelligence,人工智能)这一核心理念,旨在引导读者掌握与 AI对话的关键技巧,并将AI融入工作和生活真正体验 AI带给人类的高效与便捷。 本书从技术的发展规律人手,探讨了把AI作为方法的必然性和必要性,进一步剖析了算法与哲学在内在逻辑上的贯通性。此外,本书通过丰富多样的案例展示了 AI的强大魅力,通过一系列 召唤术 帮助读者运用AI创造性地完成各种各样的任务,在这个过程中体验和掌握运用AI的核心技巧。 本书适合对 AI有研究兴趣、有使用需求、有产品研发需求或有投资意向的读者阅读。读者可扫描文中的二维码了解本书所介绍的与AI交互的秘诀。
本书的目标,是让非机器学习领域甚至非计算机专业出身但有学习需求的人,轻松地掌握机器学习的基本知识,从而拥有相关的实战能力。 本书通过AI 小白 小冰拜师程序员咖哥学习机器学习的对话展开,内容轻松,实战性强,主要包括机器学习快速上手路径、数学和Python 基础知识、机器学习基础算法(线性回归和逻辑回归)、深度神经网络、卷积神经网络、循环神经网络、经典算法、集成学习、无监督和半监督等非监督学习类型、强化学习实战等内容,以及相关实战案例。本书所有案例均通过Python及Scikit-learn 机器学习库和Keras 深度学习框架实现,同时还包含丰富的数据分析和数据可视化内容。 本书适合对AI 感兴趣的程序员、项目经理、在校大学生以及任何想以零基础学机器学习的人,用以入门机器学习领域,建立从理论到实战的知识通道。
本书通过项目学习(PBL)的方式讲述基于ESP32 for Arduino的编程基础知识。本书讲述了ESP32 for Arduino的基本函数;结合硬件讲述了数组及位操作,按键消抖;UART基本知识,库函数和经典蓝牙的应用;I2C、SPI的基本原理,库函数的使用;网络及HTML基础知识,以STA和softAP模式建立WiFi连接,创建Web服务器,并实现远程HTTP访问;步进电机的基础知识及梯形加减速运动控制;PID基础知识,并利用码盘实现小车运动的精确控制。 本书配套学习资源包含ESP32 for Arduino系统软件、库、工具软件、学习参考资料,读者可以从http://www.kpcb.org.cn/hnd288.html免费下载。
本书基于项目化的学做方式,将一个个独立功能单元设计成学习项目,带领读者完成机器人设计与制作的入门学习。 主要内容包括:如何制作 飞毛腿 机器人、构建机器人开发平台、机器人如何用灯光表达信息、机器人如何用声音传情达意、机器人如何实现移动、机器人如何感知环境、为机器人造型、机器人需要怎样的电源系统、桌面助理机器人的设计、自主移动机器人的设计。 每个项目均是作者亲自设计制作完成,过程有效,数据可靠。 书中配有二维码,扫码即可观看视频讲解。 本书可为想学习机器人设计与制作相关知识的入门级读者、初级机器人工程师提供帮助,也可供大学院校相关专业师生学习参考。
本书的作者约翰 冯 诺伊曼(John von Neumann,1903 1957)是20世纪重要的数学家之一,被后人称为 计算机之父 和 博弈论之父 。 本书是诺依曼在1955 1956年为西里曼讲座而准备的未完成讲稿,是作者对过去十几年在计算机领域所做研究的一个总结性梳理。诺依曼在书中首先概述了模拟计算机和数字计算机的一些基本设计思想和理论基础,然后从数学的角度,主要是逻辑和统计数学的角度,探讨了人脑的神经系统的控制和逻辑结构,对计算机的数学运算和人脑思维的过程进行了比较研究。 本书是计算机和人工智能领域的一篇重要的原始文献,具有高度的前瞻性,为计算机的创新与发展以及机器人的研究指明了方向。
加里.卡斯帕罗夫在1997年对战IBM公司的超级计算机 深蓝 是科技史上的一个分水岭。这是人工智能时代的一个新纪元:在这场*激烈的比赛中,首次出现了能够击败国际象棋世界冠军的机器。那一刻是人类-一个多世纪以来孜孜以求、勇攀科技高峰的结晶。在这本突破性的书中,卡斯帕罗夫第次揭示了他惊人的一面,描述了他在面对*为强大的对手时的谋划与布局,在全世界的注视下奋勇争先,并叙述了通过国际象棋程序的发展考察人工智能的发展历史。 卡斯帕罗夫用他无与伦比的经验审视了智能机器的未来,并预见到它的可能性。许多批评家谴责人工智能是一个巨大的威胁,特别是对某些特定人群的工作岗位而言。卡斯帕罗夫在本书中强有力地论证了:人类不应害怕我们*为非凡的创造物,而是应与之协作,达到新的高度。
传统材料研发模式主要基于实验“试错法”,其研发周期长、效率低,人工智能驱动的科研范式变革和新材料数字化研发模式能有效地降低研发成本,缩短研发周期。本书基于计算、数据、AI和实验“四位一体”的新材料集成式智能化研发理念,提出了基于材料基因编码的新材料智能设计范式,从企业级新材料研发和面向科研的材料计算视角,重点围绕高通量材料集成计算、多尺度材料计算模拟、材料数据库、材料数据机器学习、新材料研发制造软件等介绍了新材料数字化智能化研发和设计基本概念、方法、技术和应用。本书同时也介绍了国产的高通量多尺度集成式材料智能化设计工业软件MatCloud+,并通过一些精选案例介绍了材料计算、数据和新一代人工智能等数字化研发方法技术在新能源、金属/合金、石油化工、复合材料、新型功能材料等重点材料行业或领域的
工业机器人作为一种高科技集成装备,对专业人才有着多层次的需求。 本书根据机器人行业发展趋势,从生产实际出发,详细讲解了工业机器人的应用基础、KUKA工业机器人的现场编程与操作、WorkVisual的编程与操作、KUAK工业机器人的运输与安装、KUAK工业机器人的调整与保养等内容。 本书实用性与可参考性强,可为从事工业机器人操作与维护相关工作的工程技术人员提供帮助,也可供普通高等院校、职业院校机电专业、机器人专业的师生学习参考。
为完成高等教育培养杰出人才的目标,北京大学、清华大学和北京通用人工智能研究院共同编写了这本《通用人工智能人才培养体系》,构建了世界上第一个聚焦通用人工智能的人才培养体系和 通识、通智、通用 的 通才 培养框架,旨在培养具备人文素养和家国情怀,拥有独立思辨和跨学科思维,掌握人工智能核心理论和技术,勇于实践开拓科研格局的国际领先的高层次复合型人工智能领军人才。 本书介绍了人工智能领域的发展背景以及学科内涵,包含了围绕本科生的人才培养,重点介绍了依托于北京大学元培学院、清华大学自动化系建设的 通用人工智能实验班 的情况。针对研究生的人才培养,本书一方面立足于人工智能的学科内涵,即对内融合,依托北京大学智能学院开展工作,学生以人工智能的具体子领域为研究方向,旨在突破前沿基础理论;另一方面立
这是一本能指导读者快速掌握PyTorch和深度学习的著作,从PyTorch的原理到应用,从深度学习到强化学习,本书提供了全栈解决方案。 第1版上市后销量和口碑俱佳,是深度学习领域的畅销书,被誉为PyTorch领域的标准著作。第2版在第1版的基础上,去芜存菁,与时具进,根据PyTorch新版本全面升级,技术性、实战性、针对性、丰富性、易读性均得到了进一步提升,必定能帮助读者更轻松、更高效地进入深度学习的世界。 全书一共19章,在结构上分为三大部分: 第1部分(第1~4章) PyTorch基础 首先有针对性地讲解了Python和PyTorch的基石NumPy中的关键知识,然后详细讲解了PyTorch的基础知识、神经网络工具箱和数据处理工具箱等内容,帮助读者快速了解和掌握PyTorch。 第二部分(第5~10章) 深度学习基础 依次讲解了机器学习、视觉处理、自然语言处理、注意力机制、目标检测、
本书从原理和实战两个方面介绍了强化学习。原理方面,深入介绍了主流强化学习理论和算法,覆盖资格迹等经典算法和MuZero等深度强化学习算法;实战方面,每章都配套了编程案例,以方便读者学习。 全书从逻辑上分为三部分。 第1章:从零开始介绍强化学习的背景知识,介绍环境库Gym的使用。 第2~15章:基于折扣奖励离散时间Markov决策过程模型,介绍强化学习的主干理论和常见算法。采用数学语言推导强化学习的基础理论,进而在理论的基础上讲解算法,并为算法提供配套代码实现。基础理论的讲解突出主干部分,算法讲解全面覆盖主流的强化学习算法,包括经典的非深度强化学习算法和近年流行的强化学习算法。Python实现和算法讲解一一对应,还给出了深度强化学习算法的TensorFlow和PyTorch对照实现。 第16章:介绍其他强化学习模型,包括平均奖励模型、
强化学习作为机器学习及人工智能领域的一种重要方法,在游戏、自动驾驶、机器人路线规划等领域得到了广泛的应用。 本书结合了李宏毅老师的 深度强化学习 、周博磊老师的 强化学习纲要 、李科浇老师的 世界冠军带你从零实践强化学习 公开课的精华内容,在理论严谨的基础上深入浅出地介绍马尔可夫决策过程、蒙特卡洛方法、时序差分方法、Sarsa、Q 学习等传统强化学习算法,以及策略梯度、近端策略优化、深度Q 网络、深度确定性策略梯度等常见深度强化学习算法的基本概念和方法,并以大量生动有趣的例子帮助读者理解强化学习问题的建模过程以及核心算法的细节。 此外,本书还提供习题解答以及Python 代码实现,可以让读者进行端到端、从理论到轻松实践的全生态学习,充分掌握强化学习算法的原理并能进行实战。 本书适合对强化学习感兴趣的
注意 作为一切思维活动的起点,一直是哲学、心理学和认知神经科学的重点研究对象。随着计算机技术的发展,人类对注意力机制的模拟和应用成为计算机科学领域的热点研究方向 让计算机能够具有类似人类的注意力机制,使其能够有效地应用于对数据的理解和分析。Transformer模型诞生后,注意力机制在人工智能各大重要领域的研究和应用更是如火如荼,成果丰硕。 《人工智能注意力机制:体系、模型与算法剖析》从注意力机制这一重要角度入手,阐述注意力机制的产生背景和发展历程,通过详实的理论剖析,以深入浅出的方式着重介绍注意力机制在计算机视觉、自然语言处理,以及多模态机器学习三大人工智能方向中的应用思路、模型与算法。 《人工智能注意力机制:体系、模型与算法剖析》以人工智能相关专业研究人员,特别是计算机视觉与自然语言处理